Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Cross-regional transport potentially contributes to PM2.5 nitrate (pNO3), and this can occur as indirect transport, through which pNO3 precursors are transported to targeted regions, wherein they subsequently react with locally emitted ones to produce pNO3. SB216763 nmr However, the process has been rarely studied, which limits its comprehensive understanding. We applied the CMAQ model to study the contributions and mechanisms of pNO3 transport during autumn in the Pearl River Delta (PRD), a metropolitan region under the growing influence of cross-regional transport on PM2.5 pollution. Results showed that cross-regional transport contributed to 58% pNO3 monthly in the PRD, and this mostly occurred as indirect transport contributions (accounting for 43% among all contributions). For the first time, we identified the mechanism of indirect pNO3 transport in the PRD, which mainly involves transported O3 and locally emitted NOx reacting to produce pNO3 through N2O5 heterogeneous hydrolysis. pNO3 contributions in different periods and regions indicated differences in the indirect transport contributions to N2O5 heterogeneous hydrolysis under varying O3 availability conditions, which are determined by wind fields and the intensity of NOx emissions. On the regional scale, the pNO3 level is controlled by both transported O3 and local NOx emissions, but pNO3 sensitivity to these two precursors varies among cities. This study demonstrates the notable effect and complex process of cross-regional pNO3 transport in the PRD. Considering the important role of transported O3 for pNO3, O3 reduction within a larger scale is required to achieve PM2.5 pollution control target.Microbial fuel cell (MFC) biosensors have been suggested as an alternative detection method for biochemical oxygen demand (BOD). However, it is absolutely essential to develop maintenance procedures for MFC biosensors` because in practice the lay-up period cannot be avoided. In this work, setting electroactive bacteria (EAB) under hibernation condition was demonstrated to be a feasible maintenance method, which provided important insights into the flexible and robust BOD detection using MFC biosensors. Standard BOD solution containing 500, 200, and 20 mg/L BOD were used to evaluate the detection performance after EAB hibernations. Results demonstrated quick recovery of voltage output and high-accuracy BOD detection after hibernations up to 30 days in MFC biosensors detecting 500 mg/L and 200 mg/L BOD. Identical anode potentials after the EAB hibernations suggested intact bacterial ability of current generation. Non-turnover cyclic voltammetry immediately collected after the hibernations suggested multiple redox couples and the presence of cytochromes that played key roles in EAB metabolism and functioned as temporary electron sinks during the hibernations, leading to the increased detected BOD concentration in the restarting cycles. Generally, setting EAB under hibernation condition is a simple and convenient maintenance method for MFC-based BOD biosensors, which not only provides insights into flexible and robust BOD detection, but also be helpful for other MFC biosensing instruments.Most studies on the effects of biochar and fertilizer on soil carbon (C) and nitrogen (N) mineralization, and microbial C and N content, are restricted to a single soil type, limiting our understanding of the interactions between these factors and microbial functions. To address this paucity in knowledge, we undertook a 3-year experiment using four contrasting soils to assess the role of peanut shell biochar and fertilizer on C and N mineralization, microbial C and N, and N stoichiometry. Across all four soils, biochar significantly (P less then 0.05) increased soil carbon mineralization (Cmin) and nitrogen mineralization (Nmin) over three years compared to fertilizer and the control. Biochar also increased total C (Csoil) across the four soils in year 1, with the Fluvisol recording greater total C in year 2 and Phaeozem having greater total C in year 3. Biochar resulted in a higher microbial biomass C (Cmic), total N (Nsoil) and microbial biomass N (Nmic); the degree of change was closely related to Csoil and Nsoil. There was a positive correlation between CmicNmic and CsoilNsoil; while Csoil and Cmic increased following amendment with biochar, which reduced the soil C and N stoichiometric imbalance (Nimb) caused by the increase in the C to N ratio. However, fertilizer exacerbated the imbalance of soil C and N stoichiometry. Fertilizer also reduced the CsoilNsoil and CmicNmic ratios. Soil pH had a positive correlation with Csoil, Cmic, Nmic, Cmin, Nmin, CsoilNsoil, CmicNmic, and biochar increases this correlation. The soil pH was negatively correlated with CimbNimb and Nsoil. Fertilizer was positively correlated CimbNimb and Nsoil. In contrast, fertilizer N application lowered microbial biomass CN. We conclude that biochar reduces the imbalance of soil C and N stoichiometry, whereas fertilizer increased this imbalance. Biochar had a greater impact on C and N in soils with a lower pH.Peatlands cover approximately 4.2 million km2 of terrestrial land surface and store up to 700 Pg of terrestrial carbon. Preserving the carbon stocks in peatland is therefore crucial for climate change mitigation. Under natural conditions, peatland carbon storage is maintained by moist peat conditions, which decreases decomposition and encourages peat formation. However, conversion of peatlands to drainage-based agriculture in the form of industrial plantations and smallholder farming has resulted in globally significant greenhouse gas emissions. Paludiculture, loosely conceptualized as biomass production on wet peatlands with the potential to maintain carbon storage, is proposed as a sustainable, non-drainage-based agriculture alternative for peatland use. However, while the concept of paludiculture was developed in temperate ecoregions, its application in the tropics is poorly understood. In this review, we examine common definitions of paludiculture used in literature to derive key themes and future directions. We found three common themes ecosystem services benefits of paludiculture, hydrological conditions of peatlands, and vegetation selection for planting. Ambiguities surrounding these themes have led to questions on whether paludiculture applications are sustainable in the context of carbon sequestration in peat soil. This review aims to evaluate and advance current understanding of paludiculture in the context of tropical peatlands, which is especially pertinent given expanding agriculture development into Central Africa and South America, where large reserves of peatlands were recently discovered.
Homepage: https://www.selleckchem.com/products/SB-216763.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team