Notes
Notes - notes.io |
For prudent mitigation of influenza epizootics and possible human infections, influenza surveillance efforts in Africa should not neglect non-human mammalian hosts. The impact of IAV and IDV in non-human mammalian hosts in Africa deserves further investigation.At Bristol-Myers (BM) (1985-1990), John C. Martin started his HIV career with directing the clinical development of didanosine (ddI) and stavudine (d4T). During this period, he became aware of the acyclic nucleoside phosphonates (ANPs), such as (S)-HPMPA and PMEA, as potential antiviral drugs. Under his impulse, BM got involved in the evaluation of these ANPs, but the merger of BM with Squibb (to become BMS) incited John to leave BM and join Gilead Sciences, and the portfolio of the ANPs followed the transition. At Gilead, John succeeded in obtaining the approval from the US FDA for the use of cidofovir in the treatment of cytomegalovirus (CMV) retinitis in AIDS patients, which was reminiscent of John's first experience with ganciclovir (at Syntex) as an anti-CMV agent. At Gilead, John would then engineer the development of tenofovir, first as TDF (tenofovir disoproxil fumarate) and then as TAF (tenofovir alafenamide) and various combinations thereof, for the treatment of HIV infections (i), TDF and TAF for the treatment of hepatitis B (HBV) infections (ii), and TDF and TAF in combination with emtricitabine for the prophylaxis of HIV infections (iii).The chicken is a model animal for the study of evolution, immunity and development. In addition to their use as a model organism, chickens also represent an important agricultural product. Pathogen invasion has already been shown to modulate the expression of hundreds of genes, but the role of alternative splicing in avian virus infection remains unclear. We used RNA-seq data to analyze virus-induced changes in the alternative splicing of Gallus gallus, and found that a large number of alternative splicing events were induced by virus infection both in vivo and in vitro. Virus-responsive alternative splicing events preferentially occurred in genes involved in metabolism and transport. Many of the alternatively spliced transcripts were also expressed from genes with a function relating to splicing or immune response, suggesting a potential impact of virus infection on pre-mRNA splicing and immune gene regulation. Moreover, exon skipping was the most frequent AS event in chickens during virus infection. This is the first report describing a genome-wide analysis of alternative splicing in chicken and contributes to the genomic resources available for studying host-virus interaction in this species. Our analysis fills an important knowledge gap in understanding the extent of genome-wide alternative splicing dynamics occurring during avian virus infection and provides the impetus for the further exploration of AS in chicken defense signaling and homeostasis.The Chinaberry tree, a member of the Meliaceae family, is cultivated in China for use in traditional medicines. In 2020, Chinaberry trees with leaf deformation symptoms were found in Hangzhou, Zhejiang province, China. In order to identify possible pathogenic viruses, a symptomatic sample was subjected to deep sequencing of small interfering RNAs. Assembly of the resulting sequences led to the identification of a novel badnavirus, provisionally designated Chinaberry tree badnavirus 1 (ChTBV1). With the recent development of China's seedling industry and increasing online shopping platforms, the risk of tree virus transmission has increased substantially. Therefore, it is important to detect the occurrence of ChTBV1 to ensure the safety of the Chinaberry tree seedling industry. Here, we describe the development and validation of a sensitive and robust method relying on a loop-mediated isothermal amplification (LAMP) assay, targeting a 197 nt region, to detect ChTBV1 from Chinaberry tree leaves. IC-87114 The LAMP assay was also adapted for rapid visualization of results by a lateral flow dipstick chromatographic detection method.Endemic foot and mouth disease (FMD) in East African cattle systems is one factor that limits access to export markets. link2 The probability of FMD transmission associated with export from such systems have never been quantified and there is a need for data and analyses to guide strategies for livestock exports from regions where FMD remains endemic. The probability of infection among animals at slaughter is an important contributor to the risk of FMD transmission associated with the final beef product. In this study, we built a stochastic model to estimate the probability that beef cattle reach slaughter while infected with FMD virus for four production systems in two East African countries (Kenya and Uganda). Input values were derived from the primary literature and expert opinion. We found that the risk that FMD-infected animals reach slaughter under current conditions is high in both countries (median annual probability ranging from 0.05 among cattle from Kenyan feedlots to 0.62 from Ugandan semi-intensive systems). Cattle originating from feedlot and ranching systems in Kenya had the lowest overall probabilities of the eight systems evaluated. The final probabilities among cattle from all systems were sensitive to the likelihood of acquiring new infections en route to slaughter and especially the probability and extent of commingling with other cattle. These results give insight into factors that could be leveraged by potential interventions to lower the probability of FMD among beef cattle at slaughter. Such interventions should be evaluated considering the cost, logistics, and tradeoffs of each, ultimately guiding resource investment that is grounded in the values and capacity of each country.During a plant viral infection, host-pathogen interactions are critical for successful replication and propagation of the virus through the plant. RNA silencing suppressors (RSSs) are key players of this interplay, and they often interact with different host proteins, developing multiple functions. In the Potyviridae family, viruses produce two main RSSs, HCPro and type B P1 proteins. We focused our efforts on the less known P1b of cucumber vein yellowing virus (CVYV), a type B P1 protein, to try to identify possible factors that could play a relevant role during viral infection. We used a chimeric expression system based on plum pox virus (PPV) encoding a tagged CVYV P1b in place of the canonical HCPro. We used that tag to purify P1b in Nicotiana-benthamiana-infected plants and identified by mass spectrometry an importin-β-like protein similar to importin 7 of Arabidopsis thaliana. We further confirmed the interaction by bimolecular fluorescence complementation assays and defined its nuclear localization in the cell. Further analyses showed a possible role of this N. benthamiana homolog of Importin 7 as a modulator of the RNA silencing suppression activity of P1b.The SARS-CoV-2 pandemic has impacted public health systems all over the world. The Delta variant seems to possess enhanced transmissibility, but no clear evidence suggests it has increased virulence. Our data show that pre-exposed individuals had similar neutralizing activity against the authentic COVID-19 strain and the Delta and Epsilon variants. After only one vaccine dose, the neutralization capacity expanded to all tested variants in pre-exposed individuals. Healthy vaccinated individuals showed a limited breadth of neutralization. One vaccine dose did induce similar neutralizing antibodies against the Delta as against the authentic strain. However, even after two doses, this capacity only expanded to the Epsilon variant.The surveillance for West Nile virus (WNV) in Catalonia (northeastern Spain) has consistently detected flaviviruses not identified as WNV. With the aim of characterizing the flaviviruses circulating in Catalonia, serum samples from birds and horses collected between 2010 and 2019 and positive by panflavivirus competition ELISA (cELISA) were analyzed by microneutralization test (MNT) against different flaviviruses. A third of the samples tested were inconclusive by MNT, highlighting the limitations of current diagnostic techniques. Our results evidenced the widespread circulation of flaviviruses, in particular WNV, but also Usutu virus (USUV), and suggest that chicken and horses could serve as sentinels for both viruses. In several regions, WNV and USUV overlapped, but no significant geographical aggregation was observed. Bagaza virus (BAGV) was not detected in birds, while positivity to tick-borne encephalitis virus (TBEV) was sporadically detected in horses although no endemic foci were observed. So far, no human infections by WNV, USUV, or TBEV have been reported in Catalonia. However, these zoonotic flaviviruses need to be kept under surveillance, ideally within a One Health framework.Porcine deltacoronavirus (PDCoV) can cause diarrhea and dehydration in newborn piglets. Here, we developed a double antibody sandwich quantitative enzyme-linked immunosorbent assay (DAS-ELISA) for detection of PDCoV by using a specific monoclonal antibody against the PDCoV N protein and an anti-PDCoV rabbit polyclonal antibody. Using DAS-ELISA, the detection limit of recombinant PDCoV N protein and virus titer were approximately 0.5 ng/mL and 103.0 TCID50/mL, respectively. A total of 59 intestinal and 205 fecal samples were screened for the presence of PDCoV by using DAS-ELISA and reverse transcriptase real-time PCR (RT-qPCR). The coincidence rate of the DAS-ELISA and RT-qPCR was 89.8%. DAS-ELISA had a sensitivity of 80.8% and specificity of 95.6%. More importantly, the DAS-ELISA could detect the antigen of PDCoV inactivated virus, and the viral antigen concentrations remained unchanged in the inactivated virus. These results suggest that DAS-ELISA could be used for antigen detection of clinical samples and inactivated vaccines. It is a novel method for detecting PDCoV infections and evaluating the PDCoV vaccine.Rhinoviruses (RV), like many other viruses, modulate programmed cell death to their own advantage. The viral protease, 3C has an integral role in the modulation, and we have shown that RVA-16 3C protease cleaves Receptor-interacting protein kinase-1 (RIPK1), a key host factor that modulates various cell death and cell survival pathways. In the current study, we have investigated whether this cleavage is conserved across selected RV strains. RIPK1 was cleaved in cells infected with strains representing diversity across phylogenetic groups (A and B) and receptor usage (major and minor groups). The cleavage was abrogated in the presence of the specific 3C protease inhibitor, Rupintrivir. Interestingly, there appears to be involvement of another protease (maybe 2A protease) in RIPK1 cleavage in strains belonging to genotype B. Our data show that 3C protease from diverse RV strains cleaves RIPK1, highlighting the importance of the cleavage to the RV lifecycle.
It is a matter of debate whether diabetes alone or its associated comorbidities are responsible for severe COVID-19 outcomes. This study assessed the impact of diabetes on intensive care unit (ICU) admission and in-hospital mortality in hospitalized COVID-19 patients.
A retrospective analysis was performed on a countrywide cohort of 40,632 COVID-19 patients hospitalized between March 2020 and March 2021. link3 Data were provided by the Austrian data platform. The association of diabetes with outcomes was assessed using unmatched and propensity-score matched (PSM) logistic regression.
12.2% of patients had diabetes, 14.5% were admitted to the ICU, and 16.2% died in the hospital. Unmatched logistic regression analysis showed a significant association of diabetes (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.15-1.34,
< 0.001) with in-hospital mortality, whereas PSM analysis showed no significant association of diabetes with in-hospital mortality (OR 1.08, 95%CI 0.97-1.19,
= 0.146). Diabetes was associated with higher odds of ICU admissions in both unmatched (OR 1.
My Website: https://www.selleckchem.com/products/IC-87114.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team