Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU), which forms weak hydrogen bonds despite the high basicity caused by its hindered structure, was used to investigate tautomer formation via excited-state intermolecular proton-transfer (ESPT) reactions. The kinetics of the ESPT reactions of anthracen-2-yl-3-phenylurea (2PUA) in the presence of DBU were compared to that observed for the acetate anion (Ac) using time-resolved fluorescence measurement. Based on the association constants in the ground state, the intermolecular hydrogen bond between 2PUA and DBU was less stable than the bond between 2PUA and Ac due to steric hindrance and the geometry of the hydrogen bond. In the fluorescence spectra, 2PUA-DBU displayed prominent tautomeric emission in chloroform (CHCl3), whereas 2PUA-Ac exhibited distinct tautomeric emissions in dimethyl sulfoxide (DMSO). Kinetic analysis revealed that the rate constant of the ESPT reaction of 2PUA-DBU remarkably decreased when the proton-accepting ability of the solvent increased whereas the reaction of 2PUA-Ac was linked to the solvent polarity rather than proton-accepting ability. These results indicated that moderate hydrogen bonds due to steric hindrance were influenced by the type of solvent present, particularly if the solvents exhibited proton-accepting capabilities like DMSO. This, in turn, affected the rate constant of tautomer formation.Following a nuclear accident, radioactive iodine causes great concern to public health and safety. Organic iodide, because of its ability to escape reactor containment building and high environmental mobility, constitutes a predominant fraction of airborne radioiodine at places far away from the accident site. As the iodine released from a reactor core is inorganic iodine, it is vital to understand the mechanism of organic iodide formation inside reactor containment. In this context, we investigated the surface prevalence and adsorption of various inorganic iodines, I-, I3-, and IO3-, at a nuclear paint (used in nuclear installations) monolayer-water interface, mimicking the painted inner walls of an accident-affected containment building that are exposed to the iodine-containing condensed water layer. Vibrational sum frequency generation (VSFG) measurements in the OH and CH stretch regions reveal that the paint-water interface changes its charge characteristics with the pH of the water that affects the degree of interaction with the iodine species. At the acidic condition (bulk pH 9.5), the paint becomes net neutral and weakly interacts with the iodine species. These interactions change the conformation of the paint such that its hydrophobic alkyl groups orient increasingly away from the aqueous phase. The order of adsorption increases as IO3- less then I- less then I3- for the different iodine species studied.Trivalent europium (Eu3+) complexes are attractive materials for luminescence applications if energy transfer from antenna ligands to the lanthanide ion is efficient. However, the microscopic mechanisms of the transfer remain elusive, and fundamental physical chemistry questions still require answers. We track the energy transfer processes in a luminescent complex Eu(hfa)3(DPPTO)2 (hfa, hexafluoroacetylacetonate; DPPTO, 2-diphenylphosphoryltriphenylene) using time-resolved photoluminescence spectroscopy. In addition to the conventional energy transfer pathway through the T1 state of the ligands, we discovered ultrafast energy transfer pathway directly from the singlet excited states of the ligands to the 5D1 state of Eu3+. The short time scale of the energy transfer (3 ns, 200 ns) results in its high photoluminescence quantum yield. The discovery of the distinct energy transfer pathways from a single chromophore is important for establishing design strategies of luminescent complexes.The abnormal level of cysteine (Cys) in the human body will cause a series of diseases, and the study of the sensing mechanism is of great significance for the design of efficient fluorescent probes. Here, we used time-dependent density functional theory to study the sensing mechanism of a newly synthesized imidazo [1,5-α] pyridine-based fluorescent probe (MZC-AC) for the detection of Cys, which is proposed to be designed based on excited-state intramolecular proton transfer (ESIPT). We first show that the fluorescence quenching mechanism of MZC-AC is due to a nonclassical photoinduced electron transfer (PET) process in which the curve crossing between local excited and charge-transfer states is observed and the acrylate group acts as an electron acceptor. When the acrylate group is replaced by the hydroxyl group due to the reaction between MZC-AC and Cys, the PET is off and a significant fluorescence enhancement of the formed MZC is observed. Our theoretical results indicate that the fluorescence enhancement mechanism of MZC is not based on the ESIPT. The calculated potential energy curve along the proton transfer pathway shows that the electronic energy of MZC-keto is larger than that of MZC-enol. Moreover, the computed emission energy of MZC-enol is closer to the experimental data than that of MZC-keto. The experimentally observed large Stokes shift was ascribed to the intramolecular charge transfer character of the first excited state of MZC. Our theoretical results can explain well the fluorescence behavior of MZC-AC and MZC and invalidate the experimentally proposed ESIPT mechanism of MZC.We report calculations for the elastic collision of low-energy positrons by acetone (C3H6O). For this purpose, the Schwinger multichannel method was used in the static plus polarization approach to calculate cross sections in the energy range from 10-4 to 10 eV. Acetone is a polar molecule, and the effect of the long-range dipole interaction was taken into account through the Born-closure scheme. Our integral cross section was compared with the experimental total cross section results available in the literature, which do not agree among themselves below 2 eV. Our results agree qualitatively well with the most recent experimental data available in all energy regions. Olaparib purchase Particularly, below the positronium formation channel threshold, when the experimental data are corrected because of the angular resolution of the apparatus, the quantitative agreement is improved.
Homepage: https://www.selleckchem.com/products/AZD2281(Olaparib).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team