Notes
![]() ![]() Notes - notes.io |
In addition, exogenous Spd considerably reduced the expression of OsSAMDC2, OsSPDS1 and OsSPDS3 under HT but not the expression of OsADC1. The above mentioned results indicate that the exogenous Spd could help young rice spikelets to resist HT stress by reducing the expression of OsSAMDC2, OsSPDS1 and OsSPDS3, resulting in higher levels of endogenous Spd and Spm, which were also positively correlated with yield. In conclusion, the adverse effect of HT stress on young spikelets seems to be alleviated by increasing the amounts of Spd and Spm, which provides guidance for adaptation to heat stress during rice production.The binder of sperm family of proteins has been reported to be indispensable for sperm maturation and capacitation. However, their physiological functions in fertility have only been studied in vitro. CRISPR/Cas9 genome editing was utilized to generate double knockout (DKO) mice by simultaneously targeting the two murine binder of sperm genes, Bsph1 and Bsph2. To confirm that the homologous genes and proteins were completely eliminated in the DKO mice, different methods such as reverse transcription polymerase chain reaction, digital droplet-polymerase chain reaction and liquid chromatography tandem mass spectrometry were applied. Bsph1/2 DKO male mice were bred by intercrossing. Compared to wild type counterparts, male Bsph1/2 null mice, lacking BSPH1/2 proteins, were fertile with no differences in sperm motility and sperm count. However, the weights of male pups were significantly increased in Bsph1/2 double knockout mice in a time dependent manner spanning days 6 and 21, as well as 6 weeks of age. No change was detected in the weights of female pups during the same period. Taken together, these data indicate that BSPH1/2 proteins are dispensable for male fertility in mice but may influence growth.Currently, the inspection and supervision of animal ingredients relies primarily upon specific amplification-dependent methods, whose efficiency and accuracy are being seriously challenged by the increasing diversity and complexity of meat products. High-throughput sequencing (HTS) technology was employed to develop an alternative method to detect animal-derived ingredients in meat products. A custom-built database containing 2,354 complete mitochondrial genomic sequences from animals, an identification analysis pipeline based on short-sequence alignment, and a web-based server were built to facilitate this detection. The entire process, including DNA extraction, gene amplification, and sequencing, was established and optimized for both marker gene (part of the CYTB gene)-based detection and total DNA-based detection. Using simulated samples containing various levels of pig, cattle, sheep, chicken, rabbit, and mice ingredients, the detection capability and accuracy of this method were investigated. The results of this study indicated that the method is capable of detecting animal components in meats that are present at levels as low as 1%. Our method was then tested using 28 batches of real meat products such as raw meat slices, raw meat mince, cooked dried meat, cooked meat sausage, and other supermarket samples, with a traditional qPCR method as the control. The results demonstrated an accuracy of 97.65% for the qualitative detection method, which indicate that the developed method is reliable for the detection of animal components. The method is also effective for the identification of unknown food samples containing mixed animal components, which suggests a good future in application.The study quantified the abundances of antibiotic resistance genes (ARGs) and facultative pathogenic bacteria (FPB) as well as one mobile genetic element in genomic DNA via qPCR from 23 different wastewater treatment plant (WWTP) effluents in Germany. 12 clinically relevant ARGs were categorized into frequently, intermediately, and rarely occurring genetic parameters of communal wastewaters. Taxonomic PCR quantifications of five FPB targeting Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, and enterococci were performed. The WWTPs differed in their catchment areas being impacted by hospitals, food processing companies, or housing areas only. The total discharges of the analyzed ARGs and FPB were found to cluster independently of the sizes of the WWTPs with a maximum difference of two log units within one cluster. Initially, quantitative data evaluations revealed no significant difference between ARG categories and WWTP catchment areas. More distinct correlations became obvious with a Pearson correlation approach, where each single taxonomic marker is compared to each ARG target. Here, increased correlation of FPB (i.e. E. coli, K. pneumoniae, P. aeruginosa, and enterococci) with clinically relevant ARGs of the category of rarely occurring resistance genes (blaNDM-1, vanA) was found in WWTP effluents being influenced by hospital wastewaters.Purpose Polycystic ovarian morphology (PCOM) is one of the key features of polycystic ovary syndrome (PCOS). The diagnosis of PCOM according to the Rotterdam criteria (≥12 antral follicles per ovary) is debated because of the high prevalence of PCOM in the general population. Androgen receptor (AR) is associated with the PCOS phenotype and might as well play a role during folliculogenesis. This study is aimed to investigate the expression of the AR in PCOS granulosa cells (GCs) and its relationship with the PCOM phenotype. Methods 106 PCOS cases and 63 controls were included from the Center for Reproductive Medicine, Shandong University. The diagnosis of PCOS was following the Rotterdam criteria (2003). Total RNA was extracted from GCs retrieved from ovarian stimulation. The expression of AR was amplified by means of quantitative real-time polymerase chain reaction. https://www.selleckchem.com/ Results The AR expression was significantly decreased in PCOS cases, especially in the tPCOM subgroup (≥20 antral follicles per ovary). Correlation analyses showed that AR expression was significantly correlated with serum FSH levels in controls and non-tPCOM. In the tPCOM subgroup, the AR expression was significantly correlated with serum LH levels. Interestingly, the significance of these correlations gradually disappeared as the threshold of antral follicles increased above 24 for PCOM. Conclusions AR was differently expressed in PCOS and especially in the tPCOM subtype. The correlation of AR expression with serum FSH and LH might be associated with the number of follicles in PCOM.
Website: https://www.selleckchem.com/
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team