Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
h with an accuracy of 77%. The non-invasiveness, high productivity, and reasonable cost ensure the availability of this predictive technology in all levels of healthcare.The aim of the study was to develop a technology for anti-thrombogenic drug coating of biodegradable porous scaffolds and to evaluate the physicomechanical and hemocompatible properties of functionally active vascular prostheses with and without a drug coating.
Vascular prostheses from polyhydroxybutyrate/valerate and polycaprolactone with the incorporated vascular endothelial growth factor, the main fibroblast growth factor, and the chemoattractant SDF-1α were made by emulsion electrospinning. Additional surface modification of the prostheses was carried out by forming a hydrogel coating of polyvinylpyrrolidone capable of binding drugs as a result of complexation. Unfractionated heparin and iloprost were used as anti-thrombogenic drugs.
We show that after the modification of vascular prostheses with heparin and iloprost, a 5.8-fold increase in the Young's modulus value was noted, which indicated a greater stiffness of these grafts compared to the unmodified controls. Platelet aggregation on the surface of heparin + iloprost coated vascular prostheses was 3.3 times less than that with the unmodified controls, and 1.8 times less compared to intact platelet-rich plasma. The surface of vascular prostheses with heparin and iloprost was resistant to adhesion of platelets and blood proteins.
Drug (unfractionated heparin and iloprost) coating of the surface of biodegradable prostheses significantly improved the anti-thrombogenic properties of these grafts but contributed to the increased stiffness of the prostheses.
Drug (unfractionated heparin and iloprost) coating of the surface of biodegradable prostheses significantly improved the anti-thrombogenic properties of these grafts but contributed to the increased stiffness of the prostheses.The review is devoted to the systematization, classification, and generalization of the results of modern scientific research on the role of bile acids as a new class of steroid hormones. The paper presents the evidence for bile acid participation in the regulation of the body energy metabolism, body weight control, as well as the pathogenesis of obesity, diabetes mellitus, insulin resistance, and cardiovascular diseases. Particular attention is paid to the role of bile acids in the control of nonspecific energy expenditure of the body. The applied aspects of using the novel data about the membrane and intracellular receptors responsible for the development of hormonal regulatory effects of bile acids are analyzed. According to the authors, the modern data on the role of bile acids in the regulation of body functions allow a deeper understanding of the pathogenesis of body weight disorders and associated cardiovascular diseases. The review demonstrates promising directions in the search for specific methods of prevention and correction of these pathological conditions.In recent years, the number of scientific publications on artificial intelligence (AI), primarily on machine learning, with respect to neurosurgery, has increased. The aim of the study was to conduct a systematic literature review and identify the main areas of AI applications in neurosurgery.
Using the PubMed search engine, we found and analyzed 327 original articles published in 1996-2019. The key words specific to each topic were identified using topic modeling algorithms LDA and ARTM, which are part of the AI-based natural language processing.
Five main areas of neurosurgery, in which research into AI methods are underway, have been identified neuro-oncology, functional neurosurgery, vascular neurosurgery, spinal neurosurgery, and surgery of traumatic brain injury. Specifics of these studies are characterized.
The information presented in this review can be instrumental in planning new research projects in neurosurgery.
The information presented in this review can be instrumental in planning new research projects in neurosurgery.The review analyzes current clinical studies on the use of therapeutic hypothermia as a neuroprotective method for treatment of brain damage. This method yields good outcomes in patients with acute brain injuries and chronic critical conditions. There has been shown the interest of researchers in studying the preventive potential of therapeutic hypothermia in secondary neuronal damage. There has been described participation of new molecules producing positive effect on tissues and cells of the central nervous system - proteins and hormones of cold stress - in the mechanisms of neuroprotection in the brain. The prospects of using targeted temperature management in treatment of brain damage are considered.The aim of the study was to develop a method for diagnosing pre-nosological changes in the electrophysiological state of the myocardium in patients with somatoform dysfunction of the autonomic nervous system (SDANS) and risk factors for cardiovascular diseases using the ECG dispersion mapping method.
The study involved 109 male patients, 58 of them with SDANS, and 51 were healthy subjects. The patients with SDANS had the following risk factors for cardiovascular diseases, in decreasing order stress (71% of cases), low physical activity (59%), smoking (57%), overweight and obesity (43%), anxiety (41%), low consumption of vegetables and fruit (36%), lack of extra aerobic physical activity (36%), excessive alcohol consumption (34%), depression (26%), total cholesterol ≥5 mmol/L (23%), and heart rate ≥80 (9% of the cases). All the subjects underwent clinical examination, laboratory investigation, ECG, ECG dispersion mapping, heart rate variability monitoring.
Using the method of ECG dispersion mapping allowed or assessing pre-nosological changes in the electrophysiological state of the myocardium which includes cardiovascular risk factors with a reclassifying potential, proves the development of pre-nosological changes in patients with SDANS in response to daily physical strain. The changes are associated with the tension of the electrophysiological state of the myocardium, an increased activity of the sympathetic division of the ANS being one of its pathogenetic mechanisms.The aim of the study was to develop technologies for predicting the development of preeclampsia (PE) based on biomedical and molecular-genetic predictors and the calculation of individual risks for this pregnancy complication.
The study involved 457 pregnant women. Of them, 147 women had chronic arterial hypertension (CAH); 109 pregnant women had CAH and secondary preeclampsia (PE); 201 patients had PE. The control group consisted of 105 pregnant women without hypertensive disorders or proteinuria. We performed a retrospective analysis of gestation course and labor outcomes, calculated risk factors using the Open Epi system and logistic regression method. selleck Polymorphisms of genes controlling the vascular tone were identified in venous blood.
There were identified risk factors for developing PE, including those in women with CAH chronic pyelonephritis; baseline mean AP above 95 mm Hg and diastolic AP above 80 mm Hg; body mass index over 30; family history of arterial hypertension. The following were identifieindividual risk of PE, which formed the basis for a computer program.
Calculating the individual risks of PE using the technologies proposed by the authors allows identifying pregnant women belonging to the high-risk group on a timely basis, which ensures high-quality implementation of preventive measures, provides a personalized approach and the possibility to prove the need for additional examination of this category of patients.
Calculating the individual risks of PE using the technologies proposed by the authors allows identifying pregnant women belonging to the high-risk group on a timely basis, which ensures high-quality implementation of preventive measures, provides a personalized approach and the possibility to prove the need for additional examination of this category of patients.The main requirements for a screening test are simplicity, non-invasiveness, safety of testing procedures, high processing speed, and ability to detect diseases at an early stage. A multichannel gas analyzer for assessment of exhaled air composition (diode laser spectrometer), non-invasive screening, and biomedical testing was developed on the basis of near-infrared diode lasers with fiber output. The device measures the following exhaled air components 12CO2, 13CO2, CH4, NH3, H2O, and H2S. The concentration of molecules was measured in a multi-pass Herriot cell with a reference length of 40 cm, 1.8 L volume, and a total optical path length of 26 m. Three diode lasers manufactured by NTT Electronics (Japan) were used in the work. Detection of CH4 was carried out in the 1.65 μm wavelength range, 12CO2, 13CO2, and H2S levels were measured in the 1.60 μm range, NH3 and H2O in the 1.51 μm range. All measurements were taken in real time. Clinical testing of the spectrometer was carried out at V.M. Buyanov City Clinical Hospital of Moscow Department of Health. More than 150 patients were examined. The tests included analysis and measurement of these molecular components in the exhaled air of patients with various diseases. The content of these components was studied in conditions of various changes in the human physiological state (dosed physical activity, relaxation, psychoemotional stress, etc.). The studies have demonstrated efficacy of using the developed hardware system for assessment of exhaled air components in order to reveal functional disorders in various diseases of the digestive system, cardiorespiratory system, diseases caused by impaired nitrogen-excreting function of the kidneys, etc.The aim of the investigation was to study the species composition of colon microbiocenosis in patients with chronic kidney disease receiving programmed hemodialysis treatment and to evaluate the efficacy of its correction using a new immobilized synbiotic.
Samples of colon microbiota from 62 patients undergoing programmed hemodialysis were studied before and after a course of diet therapy that included probiotic components, in particular, the immobilized synbiotic LB-complex L. Isolation of microorganisms was carried out according to our original method; for bacteria identification, a MALDI-TOF Autoflex speed mass spectrometer (Bruker Daltonik, Germany) was used in the Biotyper program mode. The results were assessed using the criteria proposed by the authors and based on the OST 91500.11.0004-2003. The efficacy of the immobilized synbiotic was determined based on the clinical data, questionnaires, and bacteriological tests.
In patients receiving programmed hemodialysis (before the start of the diet therapthe microbiocenosis, normalizes its functions, and leads to an overall improvement in health and quality of life.
In patients receiving programmed hemodialysis, the addition of a probiotic component in the diet therapy restores the evolutionarily determined structure of the microbiocenosis, normalizes its functions, and leads to an overall improvement in health and quality of life.The aim of the study was to assess the near-field resonance microwave sounding efficiency to study the dielectric properties of investing tissues in different body areas in healthy rats.
Skin dielectric properties (permittivity and conductivity) were studied in four body parts (medial and lumbar regions of the back, forehead, abdomen) of adult Wistar rats (n=30) using near-field resonance microwave sounding. For measurements, we used a special hardware and software system designed in the Federal Research Center Institute of Applied Physics of the Russian Academy of Sciences.
Dielectric properties of skin and underlying tissues significantly vary depending on a body area. The medial dorsal region was recorded to have the highest permittivity and conductivity level, while the minimum was found in the abdominal region. Frontal and caudal areas showed intermediate indices. In deepened sounding, dielectric permittivity consistently grows regardless of antenna localization (3 and 5 mm), while the conductivity recedes.
My Website: https://www.selleckchem.com/products/thz1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team