NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Utilizing a Proof Test with regard to Determination of V[Combining Dot Above]O2max throughout Non-active Grown ups Together with Weight problems.
The conducted research has shown that also for an incomplete data set in the analyzed algorithm it is possible to select optimal values of the reconstruction parameters. We can also obtain (for a given number of pixels) a reconstruction with a given maximum error. The paper indicates the differences between the classical and the examined problem of CT. The obtained results confirm that the real implementation of the parallel algorithm is also convergent, which means it is useful.In this study, we model a CNN hyper-parameter optimization problem as a bi-criteria optimization problem, where the first objective being the classification accuracy and the second objective being the computational complexity which is measured in terms of the number of floating point operations. For this bi-criteria optimization problem, we develop a Multi-Objective Simulated Annealing (MOSA) algorithm for obtaining high-quality solutions in terms of both objectives. CIFAR-10 is selected as the benchmark dataset, and the MOSA trade-off fronts obtained for this dataset are compared to the fronts generated by a single-objective Simulated Annealing (SA) algorithm with respect to several front evaluation metrics such as generational distance, spacing and spread. The comparison results suggest that the MOSA algorithm is able to search the objective space more effectively than the SA method. For each of these methods, some front solutions are selected for longer training in order to see their actual performance on the original test set. Again, the results state that the MOSA performs better than the SA under multi-objective setting. The performance of the MOSA configurations are also compared to other search generated and human designed state-of-the-art architectures. It is shown that the network configurations generated by the MOSA are not dominated by those architectures, and the proposed method can be of great use when the computational complexity is as important as the test accuracy.Cryptocurrencies such as Bitcoin (BTC) have seen a surge in value in the recent past and appeared as a useful investment opportunity for traders. However, their short term profitability using algorithmic trading strategies remains unanswered. In this work, we focus on the short term profitability of BTC against the euro and the yen for an eight-year period using seven trading algorithms over trading periods of length 15 and 30 days. We use the classical buy and hold (BH) as a benchmark strategy. Rather surprisingly, we found that on average, the yen is more profitable than BTC and the euro; however the answer also depends on the choice of algorithm. Reservation price algorithms result in 7.5% and 10% of average returns over 15 and 30 days respectively which is the highest for all the algorithms for the three assets. For BTC, all algorithms outperform the BH strategy. We also analyze the effect of transaction fee on the profitability of algorithms for BTC and observe that for trading period of length 15 no trading strategy is profitable for BTC. For trading period of length 30, only two strategies are profitable.Most of the traditional gene selection approaches are borrowed from other fields such as statistics and computer science, However, they do not prioritize biologically relevant genes since the ultimate goal is to determine features that optimize model performance metrics not to build a biologically meaningful model. Therefore, there is an imminent need for new computational tools that integrate the biological knowledge about the data in the process of gene selection and machine learning. Integrative gene selection enables incorporation of biological domain knowledge from external biological resources. In this study, we propose a new computational approach named CogNet that is an integrative gene selection tool that exploits biological knowledge for grouping the genes for the computational modeling tasks of ranking and classification. In CogNet, the pathfindR serves as the biological grouping tool to allow the main algorithm to rank active-subnetwork-oriented KEGG pathway enrichment analysis results to build a biologically relevant model. CogNet provides a list of significant KEGG pathways that can classify the data with a very high accuracy. The list also provides the genes belonging to these pathways that are differentially expressed that are used as features in the classification problem. The list facilitates deep analysis and better interpretability of the role of KEGG pathways in classification of the data thus better establishing the biological relevance of these differentially expressed genes. Even though the main aim of our study is not to improve the accuracy of any existing tool, the performance of the CogNet outperforms a similar approach called maTE while obtaining similar performance compared to other similar tools including SVM-RCE. CogNet was tested on 13 gene expression datasets concerning a variety of diseases.Nanopublications are Resource Description Framework (RDF) graphs encoding scientific facts extracted from the literature and enriched with provenance and attribution information. There are millions of nanopublications currently available on the Web, especially in the life science domain. Nanopublications are thought to facilitate the discovery, exploration, and re-use of scientific facts. Nevertheless, they are still not widely used by scientists outside specific circles; they are hard to find and rarely cited. We believe this is due to the lack of services to seek, find and understand nanopublications' content. To this end, we present the NanoWeb application to seamlessly search, access, explore, and re-use the nanopublications publicly available on the Web. For the time being, NanoWeb focuses on the life science domain where the vastest amount of nanopublications are available. It is a unified access point to the world of nanopublications enabling search over graph data, direct connections to evidence papers, and scientific curated databases, and visual and intuitive exploration of the relation network created by the encoded scientific facts.The Capacitated Centered Clustering Problem (CCCP)-a multi-facility location model-is very important within the logistics and supply chain management fields due to its impact on industrial transportation and distribution. However, solving the CCCP is a challenging task due to its computational complexity. In this work, a strategy based on Gaussian mixture models (GMMs) and dispersion reduction is presented to obtain the most likely locations of facilities for sets of client points considering their distribution patterns. Experiments performed on large CCCP instances, and considering updated best-known solutions, led to estimate the performance of the GMMs approach, termed as Dispersion Reduction GMMs, with a mean error gap smaller than 2.6%. This result is more competitive when compared to Variable Neighborhood Search, Simulated Annealing, Genetic Algorithm and CKMeans and faster to achieve when compared to the best-known solutions obtained by Tabu-Search and Clustering Search.We explore the floating-point arithmetic implemented in the NVIDIA tensor cores, which are hardware accelerators for mixed-precision matrix multiplication available on the Volta, Turing, and Ampere microarchitectures. Using Volta V100, Turing T4, and Ampere A100 graphics cards, we determine what precision is used for the intermediate results, whether subnormal numbers are supported, what rounding mode is used, in which order the operations underlying the matrix multiplication are performed, and whether partial sums are normalized. These aspects are not documented by NVIDIA, and we gain insight by running carefully designed numerical experiments on these hardware units. Knowing the answers to these questions is important if one wishes to (1) accurately simulate NVIDIA tensor cores on conventional hardware; (2) understand the differences between results produced by code that utilizes tensor cores and code that uses only IEEE 754-compliant arithmetic operations; and (3) build custom hardware whose behavior matches that of NVIDIA tensor cores. As part of this work we provide a test suite that can be easily adapted to test newer versions of the NVIDIA tensor cores as well as similar accelerators from other vendors, as they become available. Moreover, we identify a non-monotonicity issue affecting floating point multi-operand adders if the intermediate results are not normalized after each step.
The expansion of the coronavirus pandemic and the extraordinary confinement measures imposed by governments have caused an unprecedented intense and rapid contraction of the global economy. In order to revive the economy, people must be able to move safely, which means that governments must be able to quickly detect positive cases and track their potential contacts. Different alternatives have been suggested for carrying out this tracking process, one of which uses a mobile APP which has already been shown to be an effective method in some countries.

Use an extended Technology Acceptance Model (TAM) model to investigate whether citizens would be willing to accept and adopt a mobile application that indicates if they have been in contact with people infected with COVID-19. Research Methodology A survey method was used and the information from 482 of these questionnaires was analyzed using Partial Least Squares-Structural Equation Modelling.

The results show that the Intention to Use this app would be detpp is found in over 35 years old's, which is the group that is most aware of the possibility of being affected by COVID-19. The information is unbelievably valuable for developers and governments as users would be willing to use the APP.In the near future, the Internet of Vehicles (IoV) is foreseen to become an inviolable part of smart cities. learn more The integration of vehicular ad hoc networks (VANETs) into the IoV is being driven by the advent of the Internet of Things (IoT) and high-speed communication. However, both the technological and non-technical elements of IoV need to be standardized prior to deployment on the road. This study focuses on trust management (TM) in the IoV/VANETs/ITS (intelligent transport system). Trust has always been important in vehicular networks to ensure safety. A variety of techniques for TM and evaluation have been proposed over the years, yet few comprehensive studies that lay the foundation for the development of a "standard" for TM in IoV have been reported. The motivation behind this study is to examine all the TM models available for vehicular networks to bring together all the techniques from previous studies in this review. The study was carried out using a systematic method in which 31 papers out of 256 research publications were screened. An in-depth analysis of all the TM models was conducted and the strengths and weaknesses of each are highlighted. Considering that solutions based on AI are necessary to meet the requirements of a smart city, our second objective is to analyze the implications of incorporating an AI method based on "context awareness" in a vehicular network. It is evident from mobile ad hoc networks (MANETs) that there is potential for context awareness in ad hoc networks. The findings are expected to contribute significantly to the future formulation of IoVITS standards. In addition, gray areas and open questions for new research dimensions are highlighted.
Homepage: https://www.selleckchem.com/products/pf-4708671.html
     
 
what is notes.io
 

Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 12 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.