NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Ordered Assemblage associated with CNTs-VSe2-VOx/S for Adaptable Lithium-Sulfur Batteries.
Here we experimentally demonstrate a bolometer that operates at this threshold, with a noise-equivalent power of 30 zeptowatts per square-root hertz, comparable to the lowest value reported so far13, at a thermal time constant two orders of magnitude shorter, at 500 nanoseconds. Both of these values are measured directly on the same device, giving an accurate estimation of 30h gigahertz for the calorimetric energy resolution. These improvements stem from the use of a graphene monolayer with extremely low specific heat14 as the active material. The minimum observed time constant of 200 nanoseconds is well below the dephasing times of roughly 100 microseconds reported for superconducting qubits15 and matches the timescales of currently used readout schemes16,17, thus enabling circuit quantum electrodynamics applications for bolometers.Recent years have witnessed increased interest in systems that are capable of supporting multistep chemical processes without the need for manual handling of intermediates. These systems have been based either on collections of batch reactors1 or on flow-chemistry designs2-4, both of which require considerable engineering effort to set up and control. Here we develop an out-of-equilibrium system in which different reaction zones self-organize into a geometry that can dictate the progress of an entire process sequence. Multiple (routinely around 10, and in some cases more than 20) immiscible or pairwise-immiscible liquids of different densities are placed into a rotating container, in which they experience a centrifugal force that dominates over surface tension. As a result, the liquids organize into concentric layers, with thicknesses as low as 150 micrometres and theoretically reaching tens of micrometres. The layers are robust, yet can be internally mixed by accelerating or decelerating the rotation, and each layer can be individually addressed, enabling the addition, sampling or even withdrawal of entire layers during rotation. These features are combined in proof-of-concept experiments that demonstrate, for example, multistep syntheses of small molecules of medicinal interest, simultaneous acid-base extractions, and selective separations from complex mixtures mediated by chemical shuttles. We propose that 'wall-less' concentric liquid reactors could become a useful addition to the toolbox of process chemistry at small to medium scales and, in a broader context, illustrate the advantages of transplanting material and/or chemical systems from traditional, static settings into a rotating frame of reference.Sensitive microwave detectors are essential in radioastronomy1, dark-matter axion searches2 and superconducting quantum information science3,4. The conventional strategy to obtain higher-sensitivity bolometry is the nanofabrication of ever smaller devices to augment the thermal response5-7. However, it is difficult to obtain efficient photon coupling and to maintain the material properties in a device with a large surface-to-volume ratio owing to surface contamination. Here we present an ultimately thin bolometric sensor based on monolayer graphene. To utilize the minute electronic specific heat and thermal conductivity of graphene, we develop a superconductor-graphene-superconductor Josephson junction8-13 bolometer embedded in a microwave resonator with a resonance frequency of 7.9 gigahertz and over 99 per cent coupling efficiency. The dependence of the Josephson switching current on the operating temperature, charge density, input power and frequency shows a noise-equivalent power of 7 × 10-19 watts per square-root hertz, which corresponds to an energy resolution of a single 32-gigahertz photon14, reaching the fundamental limit imposed by intrinsic thermal fluctuations at 0.19 kelvin. Our results establish that two-dimensional materials could enable the development of bolometers with the highest sensitivity allowed by the laws of thermodynamics.The Greenland Ice Sheet (GIS) is losing mass at a high rate1. Given the short-term nature of the observational record, it is difficult to assess the historical importance of this mass-loss trend. Unlike records of greenhouse gas concentrations and global temperature, in which observations have been merged with palaeoclimate datasets, there are no comparably long records for rates of GIS mass change. Here we reveal unprecedented mass loss from the GIS this century, by placing contemporary and future rates of GIS mass loss within the context of the natural variability over the past 12,000 years. We force a high-resolution ice-sheet model with an ensemble of climate histories constrained by ice-core data2. Our simulation domain covers southwestern Greenland, the mass change of which is dominated by surface mass balance. The results agree favourably with an independent chronology of the history of the GIS margin3,4. The largest pre-industrial rates of mass loss (up to 6,000 billion tonnes per century) occurred in the early Holocene, and were similar to the contemporary (AD 2000-2018) rate of around 6,100 billion tonnes per century5. Simulations of future mass loss from southwestern GIS, based on Representative Concentration Pathway (RCP) scenarios corresponding to low (RCP2.6) and high (RCP8.5) greenhouse gas concentration trajectories6, predict mass loss of between 8,800 and 35,900 billion tonnes over the twenty-first century. These rates of GIS mass loss exceed the maximum rates over the past 12,000 years. selleck chemicals llc Because rates of mass loss from the southwestern GIS scale linearly5 with the GIS as a whole, our results indicate, with high confidence, that the rate of mass loss from the GIS will exceed Holocene rates this century.An ongoing challenge in chemical research is to design catalysts that select the outcomes of the reactions of complex molecules. Chemists rely on organocatalysts or transition metal catalysts to control stereoselectivity, regioselectivity and periselectivity (selectivity among possible pericyclic reactions). Nature achieves these types of selectivity with a variety of enzymes such as the recently discovered pericyclases-a family of enzymes that catalyse pericyclic reactions1. Most characterized enzymatic pericyclic reactions have been cycloadditions, and it has been difficult to rationalize how the observed selectivities are achieved2-13. Here we report the discovery of two homologous groups of pericyclases that catalyse distinct reactions one group catalyses an Alder-ene reaction that was, to our knowledge, previously unknown in biology; the second catalyses a stereoselective hetero-Diels-Alder reaction. Guided by computational studies, we have rationalized the observed differences in reactivities and designed mutant enzymes that reverse periselectivities from Alder-ene to hetero-Diels-Alder and vice versa.
Here's my website: https://www.selleckchem.com/
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.