Notes
![]() ![]() Notes - notes.io |
Moreover, the PPy/AQDS composite layer formed many particles for improving the specific surface area and bio-attachment site for bacterial attachment, which was conducive for the proliferation of microorganisms and denitrification efficiency. The ratio of biofilm and electrode of PPy/AQDS biocathode was 0.32 ± 0.08, which was 2.46 times than bare electrode (0.13 ± 0.06). Furthermore, enrichment of specific denitrifiers and enhancement of denitrifying enzyme activity was obtained using PPy/AQDS treated electrode, the much higher relative abundance of Thauera of PPy/AQDS biocathode was 1.58 times to the application of bare graphite felt.A large fraction of the current environmental crisis derives from the large rates of human-driven biodiversity loss. Biodiversity conservation questions human practices towards biodiversity and, therefore, largely conflicts with ordinary societal aspirations. Decisions on the location of protected areas, one of the most convincing conservation tools, reflect such a competitive endeavor. Operations Research (OR) brings a set of analytical models and tools capable of resolving the conflicting interests between ecology and economy. Recent technological advances have boosted the size and variety of data available to planners, thus challenging conventional approaches bounded on optimized solutions. New models and methods are needed to use such a massive amount of data in integrative schemes addressing a large variety of concerns. This study provides an overview on the past, present and future challenges that characterize spatial conservation models supported by OR. We discuss the progress of OR models and methods in spatial conservation planning and how those models may be optimized through sophisticated algorithms and computational tools. Moreover, we anticipate possible panoramas of modern spatial conservation studies supported by OR and we explore possible avenues for the design of optimized interdisciplinary collaborative platforms in the era of Big Data, through consortia where distinct players with different motivations and services meet. By enlarging the spatial, temporal, taxonomic and societal horizons of biodiversity conservation, planners navigate around multiple socioecological/environmental equilibria and are able to decide on cost-effective strategies to improve biodiversity persistence under complex environments.Magnetic coagulation is a promising approach for treating high phosphorous (high-P) wastewater by enhancing precipitation efficiency using magnetic particles. In this study, a cost-effective and environmentally friendly magnetic seed from coal fly ash (MS-CFA) was used as an alternative material for Fe3O4 magnetic seed (MS) coagulation. The potential effect of MS-CFA was explored to reduce the settling time and the dosage of coagulant aid of polyacrylamide (PAM) in treating high-phosphorous (high-P) simulated wastewater at 100 and 200 mg P/L. The physicochemical characteristics of MS-CFA were analysed through particle size distribution (20-100 μm), pore size distribution (14-30 nm), specific surface area (1.654 m2/g), X-ray diffraction (XRD), specific gravity (4.2), and magnetic induction intensity (49.8 emu/g). The characteristics met the requirements as magnetic coagulation material. MS-CFA was combined with polyaluminum chloride (PAC) and polyacrylamide (PAM) to improve phosphorous precipitation performance. The synergised magnetic coagulation effect using MS-CFA and PAM reduced the settling time of flocs to less than 1 min due to the high specific gravity. This represents a reduction of 90% of the settling time compared to the control using PAM alone (15 min) without MS-CFA. MS-CFA efficiently reduced PAM dosage by 83% and 87% for treating 100 and 200 mg P/L, respectively. The presence of PAM (1 mg/L for 100 mg P/L and 2 mg/L for 200 mg P/L) was imperative for binding the MS-CFA and flocs, hence increasing the particle size of the magnetic flocs. The characteristics of the magnetic flocs were analysed through microscopy, particle size distribution, zeta potential measurements, and magnetic induction intensity. The characteristics of the magnetic flocs confirmed that MS-CFA could be an alternative material for Fe3O4 as the magnetic seeds in the magnetic coagulation process for treating high-P wastewater.In the present research, a new technology using the application of ozone (O³) together with an ultrafiltration (UF) membrane was tested for the tertiary treatment of wastewater. The primary and secondary wastewater-treatment systems were a septic tank and anaerobic filter. The experiment was divided into two stages the first including only the application of O3 in the reactor, and the second, inclusion of the UF membrane. During the first stage of the study, where only the ozone was applied, a time of 40 min was chosen, with removal levels for chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD5), total organic carbon (TOC), turbidity and ammonium (NH4+) of 39.5%, 45.4%, 32.4%, 44.85% and 68.4% being recorded. During stage 2, the UF membrane inside the reactor was activated after 40 min of ozonation. The values for the removal of COD, BOD5, TOC, turbidity, NH4+ and total phosphorus were 89.13%, 95.41%, 82%, 93.4%, 14.75% and 79.67%, respectively. The use of O3 + UF removed 100% of total coliforms and viruses from the secondary wastewater. In accordance with North American and European guidelines, the water resulting from the treatment process is fit for reuse. The operating costs can vary between 0.859 € m-3 and 2.440 € m-3 depending on the cost per kWh in each country. The experiments were conducted under batch-mode conditions, further evaluations about the real scale operation would require a previous pilot stage that would develop more tools for operations specifications and their costs. The results recorded here show that the performance of this new reactor design is effective in the tertiary treatment of wastewater, and should be available for use in the near future.Ecological security is the basis for ecosystems to provide various ecosystem services (ESs) to humans. Identifying ecological security patterns (ESPs) is an effective approach to determine the priority conservation areas and ensure regional ecological security. However, most previous studies on ESPs were based mainly on the supply of ESs, while the demand and sensitivity of ESs were not fully considered. In this study, a comprehensive ESP identification framework was developed by integrating the supply, demand and sensitivity of ESs with the fuzzy multicriteria decision-making and circuit theory. Taking the Yellow River Basin (YRB) as a case study, our results show that the ecological sources (139,633 km2 or 17.3%) of the YRB were located mainly in the transition area between the Qinghai-Tibet Plateau and Loess Plateau, and in the Qinling Mountains and eastern plains; these areas reliably exhibited high conservation efficiency and low decision-making risk and tradeoff levels. However, the northern and western YRB had few ecological sources due to mismatches among the supply, demand and sensitivity of ESs. Based on circuit theory, ecological corridors (36,905 m and 76,878 km2) effectively connected the western, southern and eastern parts of the YRB. These ecological sources and corridors were both dominated by grassland, forest and cropland. However, ten pinch points, primarily covered by cropland, were also recognized in the eastern YRB and should be considered as priority areas for ecological conservation. Moreover, our results indicate that this comprehensive ESP identification framework could provide useful guidance to decision-makers for maintaining ESs and ecological conservation.This study reports on a meta-analysis covering the impact of design and operating factors on published MFC performance data to inform MFC research and implementations. Factors of substrate composition, operating phase, electrode material, configuration, and pre-treatments employed were considered. The meta-analysis results indicate that dual-chamber MFCs overall achieve 18% higher COD removal and 73% higher coulombic efficiencies over that of single-chamber MFCs. MFCs using a solid operating phase achieved ˃38% higher coulombic efficiencies than those using a liquid operating phase. Statistical analyses comparing brush vs flat surface anodes revealed that brush anodes can achieve 130% higher power density than flat surface anodes. The use of a platinum catalyst was found to improve power density, as opposed to catalyst-free cathodes. However, coulombic efficiency is less likely to be influenced by the catalyst used and more likely to be dependent on the inclusion of a membrane separator. The meta-analysis results indicate that even in the presence of expensive catalysts like platinum, membrane separators are of prime importance to maintain a stable MFC operation on a long-term basis and achieve high coulombic efficiency in an MFC. Results presented in this paper outline the impact of MFC design choices on performance and can be used to guide future MFC research. These findings can be beneficial for municipalities as it provides a pathway for future MFC design and optimization by analyzing critical associations between MFC response parameters and multiple varying factors.Climate change and human activities have seriously degraded alpine grassland, potentially affecting soil particle size distribution (PSD) and further influencing the nutrient levels and erodibility of soil. Predicting the fertility and erodibility of alpine soil using multifractal dimensions of soil PSD could be used to enhance the management and restoration of degraded alpine grasslands. In the present study, we evaluated three types of alpine grasslands alpine meadow (AM), alpine steppe (AS), and alpine desert steppe (ADS). Fencing and grazing management measures were conducted at sites containing each grassland type. Then, we analyzed the PSDs, erodibility, and other properties of soil in the 0-20 cm soil layer. Multifractal characterization of soil PSD was calculated using the fractal scale theory. The findings showed that grassland type significantly impacted soil nutrients and the multifractal dimensions of soil PSDs, whereas management measures affected soil erodibility significantly. The proportion of finer particles decreased as follows AM > AS > ADS. Compared to grazing, fencing enhanced clay content and reduced the proportion of coarser particles under all three grassland types. AM had higher organic carbon and nitrogen levels than AS and ADS. Vevorisertib Multifractal dimensions were highest for AM, with ADS having higher erodibility than AM and AS. Multifractal dimensions (except for correlation dimension) also had significantly positive relationships with soil organic carbon and available nutrient content and soil erodibility, but had significantly negative correlations with soil pH, bulk density, and electrical conductivity. Thus, the multifractal dimensions of soil PSDs could be used to characterize the erodibility and fertility characteristics of soil in alpine regions, providing a reference for assessing vegetation restoration measures in the Northern Tibet Plateau.
Here's my website: https://www.selleckchem.com/products/vevorisertib-trihydrochloride.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team