Notes
![]() ![]() Notes - notes.io |
Furthermore, the magnitude of the effects may be different depending on the FFA chemical structure as well as the membrane lipid composition.Tin-based alloying anodes are exciting due to their high energy density. Unfortunately, these materials pulverize after repetitive cycling due to the large volume expansion during lithiation and delithiation; both nanostructuring and intermetallic formation can help alleviate this structural damage. Here, these ideas are combined in nanoporous antimony-tin (NP-SbSn) powders, synthesized by a simple and scalable selective-etching method. The NP-SbSn exhibits bimodal porosity that facilitates electrolyte diffusion; those void spaces, combined with the presence of two metals that alloy with lithium at different potentials, further provide a buffer against volume change. This stabilizes the structure to give NP-SbSn good cycle life (595 mAh/g after 100 cycles with 93% capacity retention). Operando transmission X-ray microscopy (TXM) showed that during cycling NP-SbSn expands by only 60% in area and then contracts back nearly to its original size with no physical disintegration. The pores shrink during lithiation as the pore walls expand into the pore space and then relax back to their initial size during delithiation with almost no degradation. Importantly, the pores remained open even in the fully lithiated state, and structures are in good physical condition after the 36th cycle. The results of this work should thus be useful for designing nanoscale structures in alloying anodes.Specific cytotoxicity for catalytic nanomedicine triggered by the tumor microenvironment (TME) has attracted increasing interest. In this work, we prepared AgBiS2 hollow nanospheres with narrow bandgaps via rapid precipitation in a weakly polar solvent, which lowered the intrinsic energy gap for the active production of highly reactive hydroxyl radicals (•OH), especially in the TME. The as-prepared AgBiS2 hollow nanospheres exhibited enhanced optical absorption and high photothermal conversion efficiency (44.2%). In addition, the hollow structured AgBiS2 nanospheres were found to have a peroxidase-mimicking feature to induce cancer cell-specific cytotoxicity while exhibiting negligible cytotoxicity toward normal cells, which might be attributed to the efficient production of highly reactive •OH originating from the overexpression H2O2 in the TME caused by surface catalysis. In particular, the cancer cell-specific cytotoxicity of the nanospheres was greatly enhanced both in vitro and in vivo upon irradiation with a near-infrared (NIR) laser (808 nm). The above-mentioned features of the hollow structured AgBiS2 will make it a promising candidate for tumor therapy.Bovine milk-derived exosomes (BMDEs) have potential applications in the pharmaceutical industry as drug delivery carriers. A comprehensive analysis of protein glycosylation in exosomes is necessary to elucidate the process of targeted delivery. In this work, free oligosaccharides (FOSs), O-glycans, and N-glycans in BMDEs and whey were first analyzed through multiple derivation strategies. In summary, 13 FOSs, 44 O-glycans, and 94 N-glycans were identified in bovine milk. To analyze site-specific glycosylation of glycoproteins, a one-step method was used to enrich and characterize intact glycopeptides. A total of 1359 proteins including 114 glycoproteins were identified and most of these were located in the exosomes. Approximately 95 glycopeptides were initially discovered and 5 predicted glycosites were confirmed in BMDEs. Collectively, these findings revealed the characterization and distribution of glycans and glycoproteins in BMDEs, providing insight into the potential applications of BMDEs in drug delivery and food science.We demonstrate graphene-functionalized self-phase-locking of laser pulses for a dramatically elevated repetition rate by employing an intrinsic resonating structure in a fiber ring laser cavity, the modes thereby satisfying the phase-matching condition passively, through both the resonator and the laser cavity. Graphene is directly synthesized around a 1-mm-diameter Cu wire catalyst, avoiding the deleterious transfer process. The wire provides a form factor to the fiber ring resonator as a versatile winding hub, guaranteeing damage-minimized and recyclable contact of the synthesized graphene with a diameter-controlled optical microfiber. In-depth analysis of the graphene confirms the optical nonlinearity critically required for pulse formation. The laser-graphene interaction, the intermode phase-locking function of graphene, and the pulse formation with the resonator are systematically elucidated to explain the experimentally generated laser pulses at a repetition rate of 57.8 gigahertz (GHz). Additionally, tunability of the repetition rate up to 1.5 GHz by the photothermal effect of graphene is demonstrated.A compact multi-gas sensor has been developed for simultaneous detection of atmospheric carbon monoxide (CO), nitrous oxide (N2O), and methane (CH4). Instead of the traditional time-division multiplexing detection technique, two lasers having center emission wavelengths of 1.653 μm (near-infrared (NIR) diode feedback (DFB) laser diode) and 4.56 μm (mid-infrared (MIR) quantum cascade laser) were simultaneously coupled to a multipass cell using a dichroic mirror, which significantly decreased the complexity of the measurement and increased the temporal resolution of the spectrometer. Wavelength modulation spectroscopy (WMS) with the second-harmonic detection technique (WMS-2f) was used to improve the detection sensitivity. A LabVIEW-based digital lock-in amplifier (DLIA) algorithm and system control unit was developed to make the system more compact and flexible. Allan deviation analysis indicates that detection limits of 6.36 ppb by volume for CO, 4.9 ppb by volume for N2O, and 23.6 ppb by volume for CH4 are obtained at 1 s averaging time, and the sensitivity can be improved to 0.44 ppb for CO, 0.41 ppb for N2O, and 2 ppb for CH4 at an optimal averaging time of 900 s. Two-day real-time measurement in ambient air was performed to demonstrate the long-term stability of the sensor system.We report here on ion-exchange polymeric nanoparticles from a linear copolymer of maleic anhydride methyl vinyl ether esterified with 30% octadecanol. The side chains for the polymer structure were optimized through metadynamics simulations, which revealed the use of octadecanol esters generates ideal free energy surfaces for drug encapsulation and release. Nanoparticles were synthesized using a solvent evaporation-precipitation method by mixing the polymer solution in acetone into water; upon acetone evaporation, a nanodispersion with an average particle size of ∼150 nm was obtained. Gentamicin sulfate, possessing five amino groups, was spontaneously entrapped in the nanocarrier by ionic interactions. Encapsulation efficiency increases significantly with the increase in pH and ionic strength. In vivo results demonstrate high gentamicin (GM) content in the enteric chamber (AUC 8207 ± 1334 (μg min)/mL) compared to 3% GM solution (AUC 2024 ± 438 (μg min)/mL). The formulation was also able to significantly extend the release of gentamicin when applied to rabbit cornea. These anionic nanoparticles can be used for extended-release of other cationic drugs.This article introduces a gel-based separation-free point-of-care (POC) device for whole blood glucose colorimetric detection. Enzymes and a chromogenic substrate needed for colorimetric detection of glucose were entrapped in a photopolymerized poly(ethylene) glycol diacrylate (PEG-DA) hydrogel that was cast-molded into a circular shape. Our method enables colorimetric detection without the need for preseparation of blood plasma as the nanometer-scale three-dimensional porous structure of the hydrogel allows the diffusion of small analytes such as glucose while blocking the much larger blood cells. Our method requires less enzymatic concentration and, hence, offers a cost-saving benefit. In addition, PEG-DA also acts as an enzyme stabilizer, and the shelf-life testing result shows that enzyme activity can be maintained in PEG-DA over a long period of time. The concept of this simple, cost-effective method was demonstrated by the colorimetric detection of blood glucose directly from human whole bloodthout any sample preparation steps. The results were compared with those of a spectrophotometry method and showed relative error ranging from 5 to 19%, and less than 9% when compared with a commercial glucose meter. The presented method has the potential to be broadly utilized for other whole blood biomolecule analyses in POC testing applications.A new monoclinic α-polymorph of the Na2FePO4F fluoride-phosphate has been directly synthesized via a hydrothermal method for application in metal-ion batteries. The crystal structure of the as-prepared α-Na2FePO4F studied with powder X-ray and neutron diffraction (P21/c, a = 13.6753(10) Å, b = 5.2503(2) Å, c = 13.7202(8) Å, β = 120.230(4)°) demonstrates strong antisite disorder between the Na and Fe atoms. As revealed with DFT-based calculations, α-Na2FePO4F has low migration barriers for Na+ along the main pathway parallel to the b axis, and an additional diffusion bypass allowing the Na+ cations to go around the Na/Fe antisite defects. These results corroborate with the extremely high experimental Na-ion diffusion coefficient of (1-5)·10-11 cm2·s-1, which is 2 orders of magnitude higher than that for the orthorhombic β-polymorph ((5-10)·10-13 cm2·s-1). Being tested as a cathode material in Na- and Li-ion battery cells, monoclinic α-Na2FePO4F exhibits a reversible specific capacity of 90 and 80 mAh g-1, respectively.Two new eight-layer hexagonal perovskites with the composition Ba8MNb6O24 (M = Fe and Cu) are synthesized by solid-state reaction at 1350-1400 °C. Their crystal structures have been investigated using X-ray and electron diffractions as well as high-resolution transmission electron microscopy. Although both compounds have similar M2+ size, Ba8FeNb6O24 and Ba8CuNb6O24 adopt shifted and twinned structures, respectively. Through comparison with the reported shifted Ba8MNb6O24 (M = Mn, Co, and Zn) and twinned Ba8NiNb6O24 as well as inexistent Ba8Mg(Nb/Ta)6O24, we elucidate that the twin-shift competition of Ba8MNb6O24 family could be related with multiple chemical factors including tolerance factors, B-cationic size difference, entropy variation with B-cation and vacancy disorder, Jahn-Teller distortion, and FSO B-B d orbit interactions.An all-solid-state redox device, composed of magnetite (Fe3O4) thin film and Li+ conducting electrolyte thin film, was fabricated for the manipulation of a magnetization angle at room temperature (RT). This is a key technology for the creation of efficient spintronics devices, but has not yet been achieved at RT by other carrier doping methods. Variations in magnetization angle and magnetic stability were precisely tracked through the use of planar Hall measurements at RT. The magnetization angle was reversibly manipulated at 10° by maintaining magnetic stability. Meanwhile, the manipulatable angle reached 56°, although the manipulation became irreversible when the magnetic stability was reduced. This large manipulation of magnetic angle was achieved through tuning of the 3d electron number and modulation of the internal strain in the Fe3O4 due to the insertion of high-density Li+ (approximately 1021 cm-3). AMG 487 This RT manipulation is applicable to highly integrated spintronics devices due to its simple structure and low electric power consumption.
My Website: https://www.selleckchem.com/products/amg-487.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team