Notes
![]() ![]() Notes - notes.io |
Background Roadside automobile mechanics are in the course of their work exposed to several hazards that put them at risk of severe debilitating health challenges. This group of workers, however, is reported not to know much about such hazards and to have little or no training on workplace safety. Aim The study aimed to identify the determinants of occupational health hazards among roadside automobile mechanics in Sokoto Metropolis. Methodology This was a descriptive, cross-sectional study, and using a two-stage sampling technique, a total of 205 roadside mechanics were recruited for the study. A semi-structured interviewer-administered questionnaire was used, and the data were imputed into and analyzed using IBM SPSS. Results The mean age of the respondents was 31.10 ± 10.19 years, and over one-third of them (38.1%) were general vehicle repairers. Majority of the respondents had good knowledge of and attitude toward workplace hazards. However, a good proportion (91.0%) of the mechanics felt that their occupation was a risky one and 80.1% ate and 86.1% drank while working. H 89 cell line Type of training and job description were the predictors of knowledge of workplace hazards. Job description was the only predictor of attitude. Burns, bruises, headache/dizziness, and cuts were the most reported work-related illnesses and injuries. Conclusion Although most of the auto-mechanics were aware and had good knowledge of workplace hazards, they did not adhere to safety practices in the workplace, mostly due to nonavailability of protective apparels. There is, therefore, need for continuous health education under the platform of the auto-mechanics association so that they can voluntarily adopt safety practices in their workplace.The delivery of education and training in plastic surgery in Sub-Saharan Africa face increasing challenges. These include endemic shortages of plastic surgeons within postgraduate medical school faculties, the erosion of financial and clinical resources for teaching, and more recently, the millennial generation paradigm shift. It is generally accepted that the millennial generation will be more discerning and comfortable in their requirements for web-based learning content to support their education and training in plastic surgery. We reviewed current literature including original and review articles obtained through a search of PubMed database, Medline, Google Scholar, and hand searching of bibliographies of published articles using the keywords social media, Blogs, Twitter, plastic surgery, and millennial generation. This article defines and explores Blogs, Podcasts, and Twitter, as web-based learning tools, and discusses how to leverage social media to maximize their educational value and effectiveness.s.The synthesis and crystal structure (100 K) of the title compound, ammonium bis[salicylaldehyde thiosemicarbazonato(2-)-κ3O,N1,S]iron(III), NH4[Fe(C8H7N3OS)2], is reported. The asymmetric unit consists of an octahedral [FeIII(thsa)2]- fragment, where thsa2- is salicylaldehyde thiosemicarbazonate(2-), and an NH4+ cation. Each thsa2- ligand binds via the thiolate S, the imine N and the phenolate O donor atoms, resulting in an FeIIIS2N2O2 chromophore. The ligands are orientated in two perpendicular planes, with the O and S atoms in cis and the N atoms in trans positions. The FeIII ion is in the low-spin state at 100 K. The crystal structure belongs to a category I order-disorder (OD) family. It is a polytype of a maximum degree of order (MDO). Fragments of the second MDO polytype lead to systematic twinning by pseudomerohedry.The solar photocatalysis of water splitting represents a significant branch of enzymatic simulation by efficient chemical conversion and the generation of hydrogen as green energy provides a feasible way for the replacement of fossil fuels to solve energy and environmental issues. We report herein the self-assembly of a CoII-based metal-organic framework (MOF) constructed from 4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetrabenzoic acid [or tetrakis(4-carboxyphenyl)ethylene, H4TCPE] and 4,4'-bipyridyl (bpy) as four-point- and two-point-connected nodes, respectively. This material, namely, poly[(μ-4,4'-bipyridyl)[μ8-4,4',4'',4'''-(ethene-1,1,2,2-tetrayl)tetrabenzoato]cobalt(II)], [Co(C30H16O8)(C10H8N2)]n, crystallized as dark-red block-shaped crystals with high crystallinity and was fully characterized by single-crystal X-ray diffraction, PXRD, IR, solid-state UV-Vis and cyclic voltammetry (CV) measurements. The redox-active CoII atoms in the structure could be used as the catalytic sites for hydrogen production via water splitting. The application of this new MOF as a heterogeneous catalyst for light-driven H2 production has been explored in a three-component system with fluorescein as photosensitizer and trimethylamine as the sacrificial electron donor, and the initial volume of H2 production is about 360 µmol after 12 h irradiation.The tridentate organic ligand 4,4',4''-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoic acid (H3L) has been synthesized (as the methanol 1.25-solvate, C48H39NO6·1.25CH3OH). As a donor-acceptor motif molecule, H3L possess strong intramolecular charge transfer (ICT) fluorescence. Through hydrogen bonds, H3L molecules construct a two-dimensional (2D) network, which pack together into three-dimensional (3D) networks with an ABC stacking pattern in the crystalline state. Based on H3L and M(NO3)2 salts (M = Cd and Zn) under solvothermal conditions, two metal-organic frameworks (MOFs), namely, catena-poly[[triaquacadmium(II)]-μ-10-(4-carboxyphenyl)-4,4'-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6-diyl)dibenzoato], [Cd(C48H37NO6)(H2O)3]n, I, and poly[[μ3-4,4',4''-(4,4,8,8,12,12-hexamethyl-8,12-dihydro-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-2,6,10-triyl)tribenzoato](μ3-hydroxido)zinc(II)], [Zn2(C48H36NO6)(OH)]n, II, were synthesized. Single-crystal analysis revealed that both MOFs adopt a 3D structure. In I, partly deprotonated HL2- behaves as a bidentate ligand to link a CdII ion to form a one-dimensional chain. In the solid state of I, the existence of weak interactions, such as O-H...O hydrogen bonds and π-π interactions, plays an essential role in aligning 2D nets and 3D networks with AB packing patterns for I. The deprotonated ligand L3- in II is utilized as a tridentate building block to bind ZnII ions to construct 3D networks, where unusual Zn4O14 clusters act as connection nodes. As a donor-acceptor molecule, H3L exhibits fluorescence with a photoluminescence quantum yield (PLQY) of 70% in the solid state. In comparison, the PL of both MOFs is red-shifted with even higher PLQYs of 79 and 85% for I and II, respectively.
My Website: https://www.selleckchem.com/products/H-89-dihydrochloride.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team