Notes
Notes - notes.io |
Chandamarutha Chenduram (CC), an Indian traditional Siddha preparation officially recorded in the Siddha formulary of India and its composition are widely used in the Siddha practice of neurological disorders like stroke/paralysis in India. However, the scientific validation and mechanistic evidence is lacking and yet to be elucidated.
To establish the scientific evidences and to explore the possible neuroprotective mechanism of CC in cerebral ischemia.
Chemical standardization of the CC was performed using atomic absorption spectroscopy and gravimetric analysis. Acute toxicity study for CC in mice was performed in accordance with OECD 423 guidelines. CC (5mg/kg) and CC (10mg/kg) were investigated in bilateral common carotid occlusion (BCCAo) model in mice. After, behavioral assessments, the brain samples were collected and the hippocampus region was micro-dissected for neurotransmitter, neurobiochemicals and inflammatory cytokines estimation. The excitatory amino acid transporter-2 (EAAT-2) expressionshas shown significant protective effect in comparison to CC5 in most of the parameters studied. CC prevented further degeneration of neurons in cerebral ischemic mice through ameliorating inflammatory cytokines and oxy-radicals mediated EAAT-2 dysfunction and subsequent excitotoxicity in neurons.
Treatment with CC has exhibited dose dependent effect and CC10 has shown significant protective effect in comparison to CC5 in most of the parameters studied. CC prevented further degeneration of neurons in cerebral ischemic mice through ameliorating inflammatory cytokines and oxy-radicals mediated EAAT-2 dysfunction and subsequent excitotoxicity in neurons.
Ziziphus Oxyphylla belongs to family Ziziphus and has been used traditionally in hypertension. It is enriched with quercetin and kaempferol derivatives, catechin and cyclopeptide alkaloids.
The current research evaluates the antihypertensive potential of aqueous methanolic extract of Z. oxyphylla (AMEZO) in NG-nitro-L-arginine methyl ester (LNAME) induced hypertension in rats.
Phytochemical analysis of AMEZO was carried out using high performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS/MS). Antihypertensive activities of AMEZO (200 and 400mg/kg) and Kaempferol were assessed in L-NAME (185μmol/kg, intraperitoneal) injected hypertensive rats. In normotensive rats, blood pressure was assessed using Power Lab data system. Serum and tissue samples were preserved for estimation of nitric oxide (NO), Cyclic guanosine monophosphate (cGMP), interleukin-6 (IL-6), tumor necrosis factor (TNF- α) and oxidative stress markers respectively. mRNA levels of eNOS, ACE, COX-2 and markers, proposing a defensive role in cardiovascular diseases.
These data depict that AMEZO and kaempferol showed antihypertensive activity in LNAME induced hypertensive rats possibly mediated through improvement in NO and cGMP levels, modulation of mRNA expression of eNOS, ACE, COX-2 and NF-kB and suppression of oxidative stress related inflammatory markers, proposing a defensive role in cardiovascular diseases.The dsz operon responsible for the biodesulfurization of organosulfurs is under the control of a 385 bp long promoter. Recently, a TetR family protein was identified which served as an activator of operon. Here we report that the TetR family protein (WP_058249973.1), named DszGR can specifically activate the dsz operon. Direct binding of the DszGR to DNA was observed at single molecule level by AFM. It was found that the binding of DszGR to the promoter DNA induces a bend by about ∼40-50° degrees which may not be enough for the activation of the promoter. Thus, bendability in the promoter sequence was analyzed. The results show that the promoter has a curvature at around -235 and -200 bp with respect to dszA start codon. On mutating this region, a decrease in activity of the promoter was observed. Our results suggest that the DszGR protein binds to the upstream sequences and induces a bend, which is facilitated by further bending of the DNA which is required for dsz promoter activity. IHF binding site present in the promoter, and a significant reduction in desulphurization activity in the absence of either IHF subunits, suggested role of IHF in regulation of the dsz operon.Transposable elements (TEs) exhibit vast diversity across insect orders and are one of the major factors driving insect evolution and speciation. Presence of TEs can be both beneficial and deleterious to their host. While it is well-established that TEs impact life-history traits, adaptations and survivability of insects under hostile environments, the influence of the ecological niche on TE-landscape remains unclear. Here, we analysed the dynamics of Tf2 retrotransposons in the brown planthopper (BPH), under environmental fluctuations. BPH, a major pest of rice, is found in almost all rice-growing ecosystems. We believe genome plasticity, attributed to TEs, has allowed BPH to adapt and colonise novel ecological niches. Our study revealed bimodal age-distribution for Tf2 elements in BPH, indicating the occurrence of two major transpositional events in its evolutionary history and their contribution in shaping BPH genome. While TEs can provide genome flexibility and facilitate adaptations, they impose massive load on the genome. Hence, we investigated the involvement of methylation in modulating transposition in BPH. We performed comparative analyses of the methylation patterns of Tf2 elements in BPH feeding on resistant- and susceptible-rice varieties, and also under pesticide stress, across different life-stages. Results confirmed that methylation, particularly in non-CG context, is involved in TE regulation and dynamics under stress. Furthermore, we observed differential methylation for BPH adults and nymphs, emphasising the importance of screening juvenile life-stages in understanding adaptive-stress-responses in insects. Collectively, this study enhances our understanding of the role of transposons in influencing the evolutionary trajectory and survival strategies of BPH across generations.Seedling vigour is an important agronomic trait and is gaining attention in Asian rice (Oryza sativa) as cultivation practices shift from transplanting to forms of direct seeding. To understand the genetic control of rice seedling vigour in dry direct seeded (aerobic) conditions we measured multiple seedling traits in 684 accessions from the 3000 Rice Genomes (3K-RG) population in both the laboratory and field at three planting depths. Our data show that phenotyping of mesocotyl length in laboratory conditions is a good predictor of field performance. By performing a genome wide association study, we found that the main QTL for mesocotyl length, percentage seedling emergence and shoot biomass are co-located on the short arm of chromosome 7. We show that haplotypes in the indica subgroup from this region can be used to predict the seedling vigour of 3K-RG accessions. The selected accessions may serve as potential donors in genomics-assisted breeding programs.DNA methylation plays an important role in the development and etiology of type 2 diabetes; however, few epigenomic studies have been conducted on twins. Herein, a two-stage study was performed to explore the associations between DNA methylation and type 2 diabetes, fasting plasma glucose, and HbA1c. DNA methylation in 316 twin pairs from the Chinese National Twin Registry (CNTR) was measured using Illumina Infinium BeadChips. selleck chemicals In the discovery sample, the results revealed that 63 CpG sites and 6 CpG sites were significantly associated with fasting plasma glucose and HbA1c, respectively. In the replication sample, cg19690313 in TXNIP was associated with both fasting plasma glucose (P = 1.23 × 10-17, FDR less then 0.001) and HbA1c (P = 2.29 × 10-18, FDR less then 0.001). Furthermore, cg04816311, cg08309687, and cg09249494 may provide new insight in the metabolic mechanism of HbA1c. Our study provides solid evidence that cg19690313 on TXNIP correlates with HbA1c and fasting plasma glucose levels.Cherries are stone fruits and belong to the economically important plant family of Rosaceae with worldwide cultivation of different species. The ground cherry, Prunus fruticosa Pall., is an ancestor of cultivated sour cherry, an important tetraploid cherry species. Here, we present a long read chromosome-level draft genome assembly and related plastid sequences using the Oxford Nanopore Technology PromethION platform and R10.3 pore type. We generated a final consensus genome sequence of 366 Mb comprising eight chromosomes. The N50 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb. The chloroplast and mitochondrial genomes were 158,217 bp and 383,281 bp long, which is in accordance with previously published plastid sequences. This is the first report of the genome of ground cherry (P. fruticosa) sequenced by long read technology only. The datasets obtained from this study provide a foundation for future breeding, molecular and evolutionary analysis in Prunus studies.A statistical optimization study was used to maximize the extraction of bioactive compounds and antioxidant activity from green tea derived from purple leaves of Camellia sinensis var. assamica. Simultaneous optimization was applied, and a combination of 60 °C, 15 min, and a mass-solvent ratio of 1 g of dehydrated purple leaves to 62.3 mL of an ethanol/citric acid solution, were determined as the ideal extraction conditions. The optimized extract of purple tea leaves (OEPL) contained showed stability in relation to variations in pH, and lyophilized OEPL exerted cytotoxic and antiproliferative effects against cancerous cells (A549 and HCT8), demonstrated antimicrobial activity towards Listeria monocytogenes (ATCC 7644), Staphylococcus aureus (ATCC 13565) and Staphylococcus epidermidis (ATCC 12288), inhibition of α-amylase and α-glycosidase enzymes and reduced the release of pro-inflammatory cytokines (TNF-α, CXCL2/MIP-2, and IL-6) in lipopolysaccharides-stimulated RAW 264.7 macrophages. Thus, our results provide a broad assessment of the bioactivity of "green" extracts obtained by a simple and low-cost process using non-toxic solvents, and they have the potential to be used for technological applications.
Radiation dose intensification improves outcome in men with high-risk prostate cancer (HR-PCa). A prospective trial was conducted to determine safety, feasibility, and maximal tolerated dose of multilevel magnetic resonance imaging (MRI)-based 5-fraction SAbR in patients with HR-PCa.
This phase I clinical trial enrolled patients with HR-PCa with grade group ≥4, prostate-specific antigen (PSA) ≥20 ng/mL, or radiographic ≥T3, and well-defined prostatic lesions on multiparametric MRI (mpMRI) into 4 dose-escalation cohorts. The initial cohort received 47.5 Gy to the prostate, 50 Gy to mpMRI-defined intraprostatic lesion(s), and 22.5 Gy to pelvic lymph nodes in 5 fractions. Radiation doses were escalated for pelvic nodes to 25 Gy and mpMRI lesion(s) to 52.5 Gy and then 55 Gy. Escalation was performed sequentially according to rule-based trial design with 7 to 15 patients per cohort and a 90-day observation period. All men received peri-rectal hydrogel spacer, intraprostatic fiducial placement, and 2 years of androgen deprivation.
Homepage: https://www.selleckchem.com/CDK.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team