Notes
![]() ![]() Notes - notes.io |
We explore the behavior of polymer-tethered particles on solid surfaces using coarse-grained molecular dynamics simulations. Segment-segment, segment-core, and core-core interactions are assumed to be purely repulsive, while the segment-substrate interactions are attractive. We analyze changes in the internal structure of single hairy particles on the surfaces with the increasing strength of the segment-substrate interactions. For this purpose, we calculate the density profiles along the x, y, z axes and the mass dipole moments. The adsorbed hairy particles are found to be symmetrical in a plane parallel to the substrate but strongly asymmetric in the vertical direction. On stronger adsorbents, the particle canopies become flattened and the cores lie closer to the wall. We consider the adsorption of hairy nanoparticles dispersed in systems of different initial particle densities. We show how the strength of segment-substrate interactions affects the structure of the adsorbed phase, the particle-wall potential of the average force, the excess adsorption isotherms, and the real adsorption isotherms.Selective inhibition of the angiotensin-converting enzyme C-domain (cACE) and neprilysin (NEP), leaving the ACE N-domain (nACE) free to degrade bradykinin and other peptides, has the potential to provide the potent antihypertensive and cardioprotective benefits observed for nonselective dual ACE/NEP inhibitors, such as omapatrilat, without the increased risk of adverse effects. We have synthesized three 1-carboxy-3-phenylpropyl dipeptide inhibitors with nanomolar potency based on the previously reported C-domain selective ACE inhibitor lisinopril-tryptophan (LisW) to probe the structural requirements for potent dual cACE/NEP inhibition. Here we report the synthesis, enzyme kinetic data, and high-resolution crystal structures of these inhibitors bound to nACE and cACE, providing valuable insight into the factors driving potency and selectivity. Overall, these results highlight the importance of the interplay between the S1' and S2' subsites for ACE domain selectivity, providing guidance for future chemistry efforts toward the development of dual cACE/NEP inhibitors.Sum-frequency generation (SFG) vibrational spectroscopy is a powerful technique to study interfaces at the molecular level. Phase-resolved SFG (PR-SFG) spectroscopy provides direct information on interfacial molecules' orientation. However, its implementation is technologically demanding it requires the generation of a local oscillator wave and control of its time delay with sub-fs accuracy. Commonly used noncollinear PR-SFG provides this control naturally but requires very accurate sample height control. Collinear PR-SFG spectroscopy is less demanding regarding sample positioning, but tuning the local oscillator time delay with this beam geometry is challenging. Here, we develop a collinear PR-SFG setup using a displaced Sagnac interferometer. This scheme allows full, independent control of the time delay and intensity of the local oscillator and provides long-time phase stabilization (better than 5° over 12 h) for the measured signal. This approach substantially reduces the complexity of an experimental setup and combines the advantages of collinear and noncollinear PR-SFG techniques.Selenium X-ray absorption spectroscopy (XAS) has found widespread use in investigations of Se-containing materials, geochemical processes, and biologically active sites. In contrast to sulfur Kβ X-ray emission spectroscopy (XES), which has been found to contain electronic and structural information complementary to S XAS, Se Kβ XES remains comparatively underexplored. Herein, we present the first Se Valence-to-Core (VtC) XES studies of reduced Se-containing compounds and FeSe dimers. Se VtC XES is found to be sensitive to changes in covalent Se bonding interactions (Se-Se/Se-C/Se-H bonding) while being relatively insensitive to changes in Fe oxidation states as selenide bridges in FeSe dimers ([Fe2Se2]2+ vs [Fe2Se2]+). In contrast, Se Kβ HERFD XAS is demonstrated to be quite sensitive to changes in the Fe oxidation state with Se Kβ HERFD XAS demonstrating experimental resolution equivalent to Kα HERFD XAS. Additionally, computational studies reveal both Se VtC XES and XAS to be sensitive to selenium protonation in FeSe complexes.The reaction between atomic carbon in its ground electronic state, C(3P), and nitrous oxide, N2O, has been studied below room temperature due to its potential importance for astrochemistry, with both species considered to be present at high abundance levels in a range of interstellar environments. On the experimental side, we measured rate constants for this reaction over the 50-296 K range using a continuous supersonic flow reactor. C(3P) atoms were generated by the pulsed photolysis of carbon tetrabromide at 266 nm and were detected by pulsed laser-induced fluorescence at 115.8 nm. Additional measurements allowing the major product channels to be elucidated were also performed. On the theoretical side, statistical rate theory was used to calculate low temperature rate constants. These calculations employed the results of new electronic structure calculations of the 3A″ potential energy surface of CNNO and provided a basis to extrapolate the measured rate constants to lower temperatures and pressures. The rate constant was found to increase monotonically as the temperature falls (kC(3P)+N2O (296 K) = (3.4 ± 0.3) × 10-11 cm3 s-1), reaching a value of kC(3P)+N2O (50 K) = (7.9 ± 0.8) × 10-11 cm3 s-1 at 50 K. As current astrochemical models do not include the C + N2O reaction, we tested the influence of this process on interstellar N2O and other related species using a gas-grain model of dense interstellar clouds. These simulations predict that N2O abundances decrease significantly at intermediate times (103 - 105 years) when gas-phase C(3P) abundances are high.The remarkable chemical activity of metal-sulfur clusters lies in their unique spatial configuration associated with the abundant unsaturated-coordination nature of sulfur sites. Yet, the manipulation of sulfur sites normally requires direct contact with other metal atoms, which inevitably changes the state of the coordinated sulfur. Herein, we facilely construct a Mn-Sn2S6 framework by regulating the sulfur environment of the [Sn2S6]4- cluster with metal ions. Mn-Sn2S6 showed superior removal performance to gaseous elemental mercury (Hg0) at low temperatures (20-60 °C) and exhibited high resistance against SO2. Moreover, Mn-Sn2S6 can completely remove liquid Hg2+ ions with low or high concentrations from acid wastewater. In addition, the adsorption capacities of Mn-Sn2S6 toward Hg0 and Hg2+ reached 21.05 and 413.3 mg/g, respectively. The results of physico-chemical characterizations revealed that compared with Cu2+, Co2+, and Fe2+, the moderate regulation of Mn2+ led to the special porous spherical structure of Mn-Sn2S6 with uniform element distribution, due to the difference of electrode potentials [Eθ(Mn2+/Mn) less then Eθ(S/S2-) less then Eθ(Sn4+/Sn2+)]. The porous structure was beneficial to Hg0 and Hg2+ adsorption, and the presence of Mn4+/Mn3+ and S1- promoted the oxidation of Hg0, resulting in stable HgS species. The constructed Mn-Sn2S6, thus, is a promising sorbent for both Hg0 ang Hg2+ removal and provides guidelines for cluster-based materials design and tuning.The extracellular loop 2 (ECL2) is the longest and the most diverse loop among class A G protein-coupled receptors (GPCRs). It connects the transmembrane (TM) helices 4 and 5 and contains a highly conserved cysteine through which it is bridged with TM3. In this paper, experimental ECL2 structures were analyzed based on their sequences, shapes, and intramolecular contacts. To take into account the flexibility, we incorporated into our analyses information from the molecular dynamics trajectories available on the GPCRmd website. Despite the high sequence variability, shapes of the analyzed structures, defined by the backbone volume overlaps, can be clustered into seven main groups. Conformational differences within the clusters can be then identified by intramolecular interactions with other GPCR structural domains. Overall, our work provides a reorganization of the structural information of the ECL2 of class A GPCR subfamilies, highlighting differences and similarities on sequence and conformation levels.Isomerization of individual residues in long-lived proteins (LLPs) is a subject of growing interest in connection with many age-related human diseases. When isomerization occurs in LLPs, it can lead to deleterious changes in protein structure, function, and proteolytic degradation. Herein, we present a novel labeling technique for rapid identification of l-isoAsp using the enzyme protein l-isoaspartyl methyltransferase (PIMT) and Tris. The succinimide intermediate formed during reaction of l-isoAsp-containing peptides with PIMT and S-adenosyl methionine (SAM) is reactive with Tris base and results in a Tris-modified aspartic acid residue with a mass shift of +103 Da. Tris-modified aspartic acid exhibits prominent and repeated neutral loss of water when subjected to collisional activation. In addition, another dissociation pathway regenerates the original peptide following loss of a characteristic mass shift. Furthermore, it is demonstrated that Tris modification can be used to identify sites of isomerization in LLPs from biological samples such as the lens of the eye. This approach simplifies identification by labeling isomerization sites with a tag that causes a mass shift and provides characteristic loss during collisional activation.Contaminants pose a great threat to amphibian populations, but the bioaccumulation and distribution of contaminants in amphibians are still unclear. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) had median concentrations of 468-3560 ng/g lipid weight (lw) and 206-2720 ng/g lw in the muscle of amphibians, respectively. BDE 209 was the predominant PBDE congener, while CBs 118, 138, 153, and 180 were the main PCB congeners. The diet compositions of amphibians were estimated by quantitative fatty acid signature analysis (QFASA). Dragonfly contributed the most to the diet of amphibians. Biomagnification factors (BMFs) based on quantitative amphibian/insect relationships showed more credible results than BMFs based on amphibian/each insect or amphibian/combined prey relationships. BMFs derived from QFASA declined with log KOW from 5 to 6.5 and then showed a parabolic relationship with log KOW greater than 6.5. BMFs of PCBs were significantly influenced by the elimination capacity of PCBs in amphibians. Less-hydrophobic PCBs preferentially accumulated in the skin than in muscle, which was probably due to the dermal exposure of less-hydrophobic PCBs for amphibians. The biomagnification and distribution of contaminants may be affected by multiple exposure pathways and the toxicokinetics of contaminants in various life stages of amphibians.High affinity phenyl-piperidine P2Y14R antagonist 1 (PPTN) was modified with piperidine bridging moieties to probe receptor affinity and hydrophobicity. Various 2-azanorbornane, nortropane, isonortropane, isoquinuclidine, and ring-opened cyclopentylamino derivatives preserved human P2Y14R affinity (fluorescence binding assay), and their pharmacophoric overlay was compared. Enantiomeric 2-azabicyclo[2.2.1]hept-5-en-3-one precursors assured stereochemically unambiguous, diverse products. Pure (S,S,S) 2-azanorbornane enantiomer 15 (MRS4738) displayed higher affinity than 1 (3-fold higher affinity than enantiomer 16) and in vivo antihyperallodynic and antiasthmatic activity. check details Its double prodrug 143 (MRS4815) dramatically reduced lung inflammation in a mouse asthma model. Related lactams 21-24 and dicarboxylate 42 displayed intermediate affinity and enhanced aqueous solubility. Isoquinuclidine 34 (IC50 15.6 nM) and isonortropanol 30 (IC50 21.3 nM) had lower lipophilicity than 1. In general, rigidified piperidine derivatives did not lower lipophilicity dramatically, except those rings with multiple polar groups.
Homepage: https://www.selleckchem.com/products/dt-061-smap.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team