Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
For the analysis of xenobiotic metabolism, metabolites are commonly qualified by high-resolution mass spectrometry such as orbitrap or time-of-flight mass spectrometers, and quantified by triple-quadrupole (QQQ) mass spectrometer based multiple reaction monitoring. While this workflow shows drawback in the difficulty for instrumental parameters transfer, and QQQ provides less specificity. In this work, we constructed a high-resolution MS/MS (HR-MS/MS) based strategy to improve the discovery and quantification of unknown xenobiotic metabolites by metabolic pathway extension (MPE) searching combined with parallel reaction monitoring (PRM). Taking the flavonoid metabolism in diabetes wound S9 incubates as a test case. Pifithrin-μ Firstly, MPE approach was used to screen all potential metabolites. In this step, an m/z value library of all theoretic flavonoid metabolites were constructed based on predefined flavonoid structures through 21 common xenobiotic metabolic reactions, and this library was matched with all features extracted from raw data (MS1 scan) of flavonoid-S9 co-incubate, then the matched features were exported into target list for MS2 fragmentation for structure validation. Secondly, the metabolites were relatively quantified by PRM mode based on their characteristic product ions. As a result, 131 metabolites of 9 different kinds of flavonoids in the skin and muscle were identified. To our best knowledge, this is the first report on the metabolism of flavonoids in the skin or muscle tissue. The results also validated the proposed HR-MS/MS-based strategy provided high specificity throughout both discovery and quantitation process of unknown xenobiotic metabolites without need of instrumental parameter transfer.Widely accessible food phytochemicals such as curcumin have been reported to have anti-inflammatory and anticarcinogenic properties. However, curcumin has poor absorption in the gut, and piperine has been of interest as a dietary compound that can enhance curcumin bioavailability. The aim of this study was to develop and optimize a technique using reversed-phase chromatography with multi-wavelength detection for the simultaneous measurement of curcumin and piperine in various biological matrices. Emodin was used as an internal standard. Protein precipitation and liquid-liquid extraction based on acetonitrile provided good recovery of these analytes. A 150 mm × 4.6 mm I.D. Luna C18 column was used under isocratic conditions to separate curcumin, piperine, and emodin with baseline resolution, and with good separation from other sample components, in as little as 4 min. The detection limits for curcumin and piperine were 3 and 7 ng/mL, respectively. This method has been used to quantitate these compounds in samples such as human intestinal epithelial cell lysates and mouse plasma or GI tissues in research aimed at examining the bioavailability of curcumin in the presence of piperine.In this study, the enhanced alkaline stability of Protein A ligands and resins designed by protein engineering approaches is demonstrated. High throughput PreDictor™ plates were used to evaluate and compare the human Immunoglobulin G (IgG) static binding capacities (SBC) of MabSelect SuRe™ and MabSelect™ PrismA affinity chromatography (AC) resins after continuous incubation in 0.1-2.0 M NaOH for 1-72 h. The alkaline effect on the Protein A affinity ligand was studied by high resolution mass spectrometry (MS). The IgG binding capacity of the investigated AC resins show expected declining trends with increasing NaOH concentrations and incubation times. The decrease is larger for MabSelect SuRe than for MabSelect PrismA and occur at lower NaOH concentrations. MabSelect SuRe display high remaining binding capacity even after 72 h continuous incubation in 0.1 M NaOH, while higher concentrations induce an accentuated decline with incubation time. The MabSelect PrismA resin shows almost no effect on the binding capacity even after 72 h incubation in 0.5 M NaOH. Decline in capacity is first observed after 48 h incubation in 1.0 M NaOH, thus displaying the extreme alkaline stability of the PrismA affinity ligand. The MS analysis of the ligands, including a Protein A single B-domain, SuRe-domain and PrismA-domain clearly illustrate the increasing alkaline stability (B-domain less then SuRe less then PrismA) as the ligand has been refined using a protein engineering approach. Deamidation and ligand degradation could be monitored in relation to NaOH incubation conditions. Enzymatic digestion of MabSelect SuRe and MabSelect PrismA resins after alkaline incubation and LC-MS/MS peptide mapping facilitates identification and quantification of specific deamidation sites on the affinity ligand.
Many scientific contributions recognize polyamines as important biomarkers for the diagnosis and treatment of cancer. Several authors have suggested the use of LC/MS instruments as an elective method for their measurement, providing good detection limits and specificity; however, many of these procedures suffer from long chromatographic run times, high detection limits and lengthy and expensive sample pre-treatment steps.
UHPLC coupled with high-resolution Orbitrap mass spectrometry (UHPLC/Orbitrap) was set up for the identification and separation ofpolyamines, together with some of their metabolites and catabolites, in the plasma of healthy and prostate cancer human patients. Thirteen metabolites were measured in deproteinized plasma samples through a new analytical approach known as the parallel reaction monitoring (PRM) for targeted quantitative analysis.
The calibration curves were linear and R2 ranged from 0.9913 to 0.9995 for all analytes. LOQ values are between 0.382 and 25ngmL
and LOD values are between 0.109 and 7.421ngmL
. The method shows an accuracy and precision for intra-day and inter-day<15% RSD and R.E.% for all the QC samples. The matrix effect calculated at different concentration levels did not exceed 15%.
The method developed provides rapid, easy and robust identification and measurement of a wide range of polyamines, and some of their metabolites that can be evaluated as biomarkers to predict the clinical features of prostate cancer patients, avoiding invasive diagnostic procedures.
The method developed provides rapid, easy and robust identification and measurement of a wide range of polyamines, and some of their metabolites that can be evaluated as biomarkers to predict the clinical features of prostate cancer patients, avoiding invasive diagnostic procedures.
Website: https://www.selleckchem.com/products/pifithrin-u.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team