Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The oral median lethal dose (LD
) of MECH was found to be higher than 5000mg/kg. There were significant (p<0.05) decrease in the charcoal movement in the mice treated with the MECH (1000mg/kg) and loperamide (5mg/kg). The pretreatment of the mice with naloxone, prazosin and propranolol each significantly (p<0.05) reversed the antidiarrhoeal activity produced by MECH.
The results obtained in this study suggest the probable involvement of opioidergic and (α
and β)-adrenergic systems in the antidiarrhoeal activity of the methanol leaf extract of Combretum hypopilinum.
The results obtained in this study suggest the probable involvement of opioidergic and (α1 and β)-adrenergic systems in the antidiarrhoeal activity of the methanol leaf extract of Combretum hypopilinum.
Uapaca species including Uapacastaudtii Pax (Phyllanthaceae) are used in West Africa ethnomedicine to treat diverse ailments including pile, rheumatism, oedema and wound healing. However, the anti-inflammatory and analgesic potential as well as constituents of the Uapacastaudtii stem bark has not been investigated.
The study was designed to evaluate the anti-inflammatory, analgesic, and antioxidant activities of extract and fractions ofU. staudtii stem bark, and to isolate the bioactive constituents.
The anti-inflammatory, analgesic and antioxidant activities of the ethanol extract, dichloromethane, ethyl acetate, butanol, and aqueous fractions of U. staudtii stem bark, as well as protocatechuic acid and betulinic acid isolated from the bioactive ethyl acetate fraction were evaluated in different mice models of inflammation and pain; furthermore, antioxidant assays were carried out. Chemical structures of isolated compounds were established based on spectroscopic studies and comparison with literature dcinal uses of the U. staudtii stem bark in the management of pain and inflammatory disease. This is the first report on the biological activities and characterization of compounds inU. staudtii, and presence of protocatechuic acid in Uapaca genus.
The Cleomaceae family is known for its richness in secondary metabolites and different Cleome species are used in folk medicine. Cleome amblyocarpa and Cleome arabica are medicinal herbs used in Tunisia and other North Africa countries to treat various diseases such as diabetes, rheumatism, colic, pain and digestive disorders.
To our knowledge, few data are available about the nutritional value, phytochemical components and biological effects of C. arabica and C. amblyocarpa cultivated in Tunisia. For this reason, the present survey aimed to determine the nutritional value, bioactive compounds and pharmacological properties of the leaves of these two species of Cleome.
To characterize and determine the bioactive compounds in both extracts of leaves of Cleome species, ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) was used. The various nutritional parameters were analyzed, in particular the amounts of protein, carbohydrates, ash, fiber, and total lipids. Vitamin E and fatty acid profosinolates. On the other hand, these latter metabolites are not present in the C. arabica extract and the leaves are characterized by the presence of flavones, methoxyflavones and their glycosides. Our findings revealed that the leaves of the two species contain a potential quantity of vitamins; proteins, carbohydrates and dietary fiber, and their hydroalcoholic extracts indicated substantial anti-inflammatory and antinociceptive activities in all the tests. Selleckchem CC-92480 Additionally, the data from the acute toxicity test proved that the leaf extracts did not cause any mortality or signs of toxicity in animals at doses up to 800 mg/kg CONCLUSIONS The results obtained in this investigation demonstrated that the leaves of C. arabica and C. amblyocarpa are a valuable source of nutrients and active substances. Our observations support the traditional utilize of these two Cleome species for the treatment of painful diseases and as a source of natural anti-inflammatory agents.
To biomechanically assess translation, contact pressures, and range of motion for anterior cable reconstruction (ACR) using hamstring allograft for large to massive rotator cuff tears.
Eight cadaveric shoulders (mean age, 68 years) were tested with a custom testing system. Range of motion (ROM), superior translation of the humeral head, and subacromial contact pressure were measured at 0°, 30°, 60°, and 90° of external rotation (ER) with 0°, 20°, and 40° of glenohumeral abduction. Three conditions were tested intact, stage III tear (supraspinatus+ anterior half of infraspinatus), and stage III tear+ allograft ACR (involving 2 supraglenoid anchors for semitendinosus tendon allograft fixation. Allograft ACR included loop-around fixation using 3 side-to-side sutures and an anchor at the articular margin to restore capsular anatomy along the anterior edge of the cuff defect.
ACR with allograft for stage III tears showed significantly higher total ROM compared with intact at all angles (P ≤ .028). Augmentatiallograft for ACR may improve rotator cuff tendon defect longevity by providing basic static ligamentous support to the dynamic tendon while helping to limit superior migration, without restricting glenohumeral kinematics.This study aims to investigate the effects and mechanisms of parathyroid hormone [1-34] (PTH1-34) on TNF-α-stimulated mice chondrocytes, as well as cartilage from a meniscus injury induced osteoarthritis (MIO) mice model. The C57BL/6J mice received medial meniscectomy, and then administrated with PTH1-34. The results showed that PTH1-34 administration decreased secondary allodynia and the pain-related transcripts. The IHC, ELISA, Micro-CT imaging and histopathology analysis revealed the significantly improved subchondral plate thickness and bone porosity, the reduced pro-inflammatory cytokines in serum and joint fluid. In vitro, mice chondrocyte was treated with TNF-α or co-cultured with synovial cells. The results showed that TNF-α markedly upregulated the MMP13 expression, and the ERK1/2, NF-κB or PI3K signaling pathway inhibitors could reverse the induction effect of TNF-α on expression of MMP13 in chondrocytes. PTH1-34 alone has no effect on the expression of MMP13 and NF-κB signaling pathways, but the PTH1-34 could reverse the induction effect of TNF-α on MMP13 expression and NF-κB signaling pathway activation in chondrocytes.
My Website: https://www.selleckchem.com/products/cc-92480.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team