Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Previous studies have found associations between grey matter atrophy and white matter hyperintensities (WMH) of vascular origin with cognitive and motor deficits in Parkinson's disease (PD). Here we investigate these relationships in a sample of PD patients and age-matched healthy controls.
Data included 50 PD patients and 45 age-matched controls with T1-weighted and FLAIR scans at baseline, 18-months, and 36-months follow-up. Deformation-based morphometry was used to measure grey matter atrophy. SNIPE (Scoring by Nonlocal Image Patch Estimator) was used to measure Alzheimer's disease-like textural patterns in the hippocampi. WMHs were segmented using T1-weighted and FLAIR images. The relationship between MRI features and clinical scores was assessed using mixed-effects models. The motor subscore of the Unified Parkinson's Disease Rating Scale (UPDRSIII), number of steps in a walking trial, and Dementia Rating Scale (DRS) were used respectively as measures of motor function, gait, and cognition.
SubstanPD.
Coronavirus induced disease 2019 (COVID-19) can be complicated by severe organ damage leading to dysfunction of the lungs and other organs. The processes that trigger organ damage in COVID-19 are incompletely understood.
Samples were donated from hospitalized patients. Sera, plasma, and autopsy-derived tissue sections were examined employing flow cytometry, enzyme-linked immunosorbent assays, and immunohistochemistry.
Here, we show that severe COVID-19 is characterized by a highly pronounced formation of neutrophil extracellular traps (NETs) inside the micro-vessels. Intravascular aggregation of NETs leads to rapid occlusion of the affected vessels, disturbed microcirculation, and organ damage. In severe COVID-19, neutrophil granulocytes are strongly activated and adopt a so-called low-density phenotype, prone to spontaneously form NETs. In accordance, markers indicating NET turnover are consistently increased in COVID-19 and linked to disease severity. Histopathology of the lungs and other organs from COVID-19 patients showed congestions of numerous micro-vessels by aggregated NETs associated with endothelial damage.
These data suggest that organ dysfunction in severe COVID-19 is associated with excessive NET formation and vascular damage.
Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung.
Deutsche Forschungsgemeinschaft (DFG), EU, Volkswagen-Stiftung.
Microglia, the brain's principal immune cell, are increasingly implicated in Alzheimer's disease (AD), but the molecular interfaces through which these cells contribute to amyloid beta (Aβ)-related neurodegeneration are unclear. Selleckchem Tetrazolium Red We recently identified microglial contributions to the homeostatic and disease-associated modulation of perineuronal nets (PNNs), extracellular matrix structures that enwrap and stabilize neuronal synapses, but whether PNNs are altered in AD remains controversial.
Extensive histological analysis was performed on male and female 5xFAD mice at 4, 8, 12, and 18 months of age to assess plaque burden, microgliosis, and PNNs. Findings were validated in postmortem AD tissue. The role of neuroinflammation in PNN loss was investigated via LPS treatment, and the ability to prevent or rescue disease-related reductions in PNNs was assessed by treating 5xFAD and 3xTg-AD model mice with colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 to deplete microglia.
Utilizing the 5xFAD mouse model and human cortical tissue, we report that PNNs are extensively lost in AD in proportion to plaque burden. Activated microglia closely associate with and engulf damaged nets in the 5xFAD brain, and inclusions of PNN material are evident in mouse and human microglia, while aggrecan, a critical PNN component, deposits within human dense-core plaques. Disease-associated reductions in parvalbumin (PV)+ interneurons, frequently coated by PNNs, are preceded by PNN coverage and integrity impairments, and similar phenotypes are elicited in wild-type mice following microglial activation with LPS. Chronic pharmacological depletion of microglia prevents 5xFAD PNN loss, with similar results observed following depletion in aged 3xTg-AD mice, and this occurs despite plaque persistence.
We conclude that phenotypically altered microglia facilitate plaque-dependent PNN loss in the AD brain.
The NIH (NIA, NINDS) and the Alzheimer's Association.
The NIH (NIA, NINDS) and the Alzheimer's Association.A major health scandal involving DEHP-tainted (di-2-ethylhexyl phthalate) foodstuffs occurred in Taiwan in 2011. We investigated temporal relationships between urinary DEHP metabolites and biomarkers of oxidative stress in two cohorts of potentially affected children during that food scandal. One cohort was collected from Kaohsiung Medical University Hospital in southern Taiwan between May and June of 2011 (the KMUH cohort). This cohort was followed up at 2, 6, and 44 months. The other cohort was collected from a nationwide health survey conducted by Taiwan's National Health Research Institutes (the NHRI cohort) for potentially affected people between August 2012 and January 2013. Both cohorts only included children 10 years old and younger who had provided enough urine for analysis of urinary DEHP oxidative metabolites and two markers of oxidative stress 8-oxo-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). The KMUH cohort had a simultaneous and significant decrease in urinary DEHP metabolites, 8-OHdG, and MDA, with the lowest concentrations found at the 6-month follow up and maintained until the 44-month follow up, consistent with those from NHRI cohort at ∼15-18 months post-scandal (p > 0.05). There were decreases in both DEHP metabolites and oxidative stress markers across the populations, but no association was observed between DEHP metabolites and oxidative stress markers in individuals in the two cohorts. Continued follow-up is needed to determine long-term health consequences in these children.Photoelectrochemical CO2 reduction into syngas (a mixture of CO and H2) provides a promising route to mitigate greenhouse gas emissions and store intermittent solar energy into value-added chemicals. Design of photoelectrode with high energy conversion efficiency and controllable syngas composition is of central importance but remains challenging. Herein, we report a decoupling strategy using dual cocatalysts to tackle the challenge based on joint computational and experimental investigations. Density functional theory calculations indicate the optimization of syngas generation using a combination of fundamentally distinctive catalytic sites. Experimentally, by integrating spatially separated dual cocatalysts of a CO-generating catalyst and a H2-generating catalyst with GaN nanowires on planar Si photocathode, we report a record high applied bias photon-to-current efficiency of 1.88% and controllable syngas products with tunable CO/H2 ratios (0-10) under one-sun illumination. Moreover, unassisted solar CO2 reduction with a solar-to-syngas efficiency of 0.
Read More: https://www.selleckchem.com/products/tetrazolium-red.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team