Notes
![]() ![]() Notes - notes.io |
Vaccines are considered one of the greatest global health achievements, improving the welfare of society by saving lives and substantially reducing the burden of infectious diseases. However, few vaccines are fully effective, for reasons ranging from intrinsic limitations to more contingent shortcomings related, e.g., to cold chain transport, handling and storage. In this context, subunit vaccines where the essential antigenic traits (but not the entire pathogen) are presented in rationally designed fashion have emerged as an attractive alternative to conventional ones. In particular, this includes the option of fully synthetic peptide vaccines able to mimic well-defined B- and T-cell epitopes from the infectious agent and to induce protection against it. Although, in general, linear peptides have been associated to low immunogenicity and partial protection, there are several strategies to address such issues. In this review, we report the progress towards the development of peptide-based vaccines against foot-and-mouth disease (FMD) a highly transmissible, economically devastating animal disease. Starting from preliminary experiments using single linear B-cell epitopes, recent research has led to more complex and successful second-generation vaccines featuring peptide dendrimers containing multiple copies of B- and T-cell epitopes against FMD virus or classical swine fever virus (CSFV). The usefulness of this strategy to prevent other animal and human diseases is discussed.A proposal for a fundamental theory is described in which classical and quantum physics as a representation of the universe as a gigantic dendrogram are unified. find more The latter is the explicate order structure corresponding to the purely number-theoretical implicate order structure given by p-adic numbers. This number field was zero-dimensional, totally disconnected, and disordered. Physical systems (such as electrons, photons) are sub-dendrograms of the universal dendrogram. Measurement process is described as interactions among dendrograms; in particular, quantum measurement problems can be resolved using this process. The theory is realistic, but realism is expressed via the the Leibniz principle of the Identity of Indiscernibles. The classical-quantum interplay is based on the degree of indistinguishability between dendrograms (in which the ergodicity assumption is removed). Depending on this degree, some physical quantities behave more or less in a quantum manner (versus classic manner). Conceptually, our theory is very close to Smolin's dynamics of difference and Rovelli's relational quantum mechanics. The presence of classical behavior in nature implies a finiteness of the Universe-dendrogram. (Infinite Universe is considered to be purely quantum.) Reconstruction of events in a four-dimensional space type is based on the holographic principle. Our model reproduces Bell-type correlations in the dendrogramic framework. By adjusting dendrogram complexity, violation of the Bell inequality can be made larger or smaller.Plant NAC (NAM, ATAF1/2, and CUC2) family is involved in various development processes including Programmed Cell Death (PCD) associated development. However, the relationship between NAC family and PCD-associated cotton pigment gland development is largely unknown. In this study, we identified 150, 153 and 299 NAC genes in newly updated genome sequences of G. arboreum, G. raimondii and G. hirsutum, respectively. All NAC genes were divided into 8 groups by the phylogenetic analysis and most of them were conserved during cotton evolution. Using the vital regulator of gland formation GhMYC2-like as bait, expression correlation analysis screened out 6 NAC genes which were low-expressed in glandless cotton and high-expressed in glanded cotton. These 6 NAC genes acted downstream of GhMYC2-like and were induced by MeJA. Silencing CGF1(Cotton Gland Formation1), another MYC-coding gene, caused almost glandless phenotype and down-regulated expression of GhMYC2-like and the 6 NAC genes, indicating a MYC-NAC regulatory network in gland development. In addition, predicted regulatory mechanism showed that the 6NAC genes were possibly regulated by light, various phytohormones and transcription factors as well as miRNAs. The interaction network and DNA binding sites of the 6 NAC transcription factors were also predicted. These results laid the foundation for further study of gland-related genes and gland development regulatory network.We investigated the interfacial properties of symmetric ternary An/AmBm/Bn and An/Am/2BmAm/2/Bn polymeric blends by means of dissipative particle dynamics (DPD) simulations. We systematically analyzed the effects of composition, chain length, and concentration of the copolymers on the interfacial tensions, interfacial widths, and the structures of each polymer component in the blends. Our simulations show that (i) the efficiency of the copolymers in reducing the interfacial tension is highly dependent on their compositions. The triblock copolymers are more effective in reducing the interfacial tension compared to that of the diblock copolymers at the same chain length and concentration; (ii) the interfacial tension of the blends increases with increases in the triblock copolymer chain length, which indicates that the triblock copolymers with a shorter chain length exhibit a better performance as the compatibilizers compared to that of their counterparts with longer chain lengths; and (iii) elevating the triblock copolymer concentration can promote copolymer enrichment at the center of the interface, which enlarges the width of the phase interfaces and reduces the interfacial tension. These findings illustrate the correlations between the efficiency of copolymer compatibilizers and their detailed molecular parameters.In the present study, biocompatible manganese nanoparticles have been linked with zinc and iron molecules to prepare different derivatives of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs (x = 0.02, 0.04, 0.06, 0.08, 0.10), using an ultrasonication approach. The structure, surface morphology, and chemical compositions of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs were elucidated by X-ray diffractometer (XRD), High-resolution transmission electron microscopy (HR-TEM), scanning electron microscope (SEM), and Energy Dispersive X-Ray Analysis (EDX) techniques. The bioactivity of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs on normal (HEK-293) and (HCT-116) colon cancer cell line was evaluated. The Mn0.5Zn0.5ErxYxFe2-2xO4 NPs treatment post 48 h resulted in a significant reduction in cells (via MTT assay, having an IC50 value between 0.88 µg/mL and 2.40 µg/mL). The specificity of Mn0.5Zn0.5ErxYxFe2-2xO4 NPs were studied by treating them on normal cells line (HEK-293). The results showed that Mn0.5Zn0.5ErxYxFe2-2xO4 NPs did not incur any effect on HEK-293, which suggests that Mn0.
Read More: https://www.selleckchem.com/products/R788(Fostamatinib-disodium).html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team