Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Phenomena occurring during the curing of concrete can decrease its mechanical properties, specifically strength, and serviceability, even before it is placed. This is due to excessive stresses caused by temperature gradients, moisture changes, and chemical processes arising during the concreting and in hardened concrete. At stress concentration sites, microcracks form in the interfacial transition zones (ITZ) in the early phase and propagate deeper into the cement paste or to the surface of the element. Microcracks can contribute to the development of larger cracks, reduce the durability of structures, limit their serviceability, and, in rare cases, lead to their failure. It is thus important to search for a tool that allows objective assessment of damage initiation and development in concrete. Objectivity of the assessment lies in it being independent of the constituents and additives used in the concrete or of external influences. The acoustic emission-based method presented in this paper allows damage detection and identification in the early age concrete (before loading) for different concrete compositions, curing conditions, temperature variations, and in reinforced concrete. As such, this method is an objective and effective tool for damage processes detection.This pilot randomized controlled trial (RCT) aimed to determine the acceptability and preliminary efficacy of a web-based cardiovascular disease (CVD) prevention intervention for women following preeclampsia. Australian women with a recent history (≤4 years post diagnosis) of preeclampsia were randomized into two study arms (1) Be Healthe for your Heart, a web-based behavioral intervention or; (2) Control, access to the National Heart Foundation website. Assessments were conducted at baseline, and after three months. Intervention acceptability and impact on absolute CVD 30-year risk score, CVD risk markers and health behaviors were assessed. Twenty-four of 31 (77.4%) women completed the three-month assessment. Eleven out of 13 intervention participants (84.6%) agreed/strongly agreed they were satisfied with the program, with a mean score of 4.2 ± 0.9 (maximum of five). There were no significant between or within group differences in absolute CVD risk, CVD risk markers or health behaviors from baseline to three months. Women with a history of preeclampsia were successfully recruited and retained and they reported high levels of acceptability with the Be Healthe for your Heart program. Further research is therefore needed from powered trials to determine the impact of web-based lifestyle interventions on CVD risk in this at-risk group.In this paper, we present the design of a practical underwater sensor network for offshore fish farm cages. An overview of the current structure of an offshore fish farm, applied sensor network solutions, and their weaknesses are given. A mixed wireless-wired approach is proposed to mitigate the problem of wire breakage in underwater wired sensor networks. The approach is based on the serial arrangement of identical sections with wired and wireless interconnections areas. Wireless section alleviates underwater maintenance operations when cages are damaged. The analytical model of the proposed solution is studied in terms of maximum power transfer efficiency and the general formulas of the current in their transmitting antennas and sensor nodes are provided. Subsequently, based on simulations, the effects of parasitic resistance across the network are evaluated. A practical underwater sensor network to reach the 30 m depth with sensor nodes distanced 6 m is used to determine the proposal compliance with the ISO 11784/11785 HDX standard in its normal operation. Taking into account the cable breakage scenario, the results from experiments demonstrate the robustness of the proposed approach to keep running the sensor nodes that are located before the short circuit. Sensor node run time is reduced only 4.07% at most using standard values when a cable breakage occurs at the second deepest section.Nowadays there is an increasing demand for the cost-effective monitoring of potential threats to the integrity of high-voltage networks and electric power infrastructures. Optical fiber sensors are a particularly interesting solution for applications in these environments, due to their low cost and positive intrinsic features, including small size and weight, dielectric properties, and invulnerability to electromagnetic interference (EMI). However, due precisely to their intrinsic EMI-immune nature, the development of a distributed optical fiber sensing solution for the detection of partial discharges and external electrical fields is in principle very challenging. Here, we propose a method to exploit the third-order and second-order nonlinear effects in silica fibers, as a means to achieve highly sensitive distributed measurements of external electrical fields in real time. By monitoring the electric-field-induced variations in the refractive index using a highly sensitive Rayleigh-based CP-φOTDR scheme, we demonstrate the distributed detection of Kerr and Pockels electro-optic effects, and how those can assign a new sensing dimension to optical fibers, transducing external electric fields into visible minute disturbances in the guided light. The proposed sensing configuration, electro-optical time domain reflectometry, is validated both theoretically and experimentally, showing experimental second-order and third-order nonlinear coefficients, respectively, of χ(2) ~ 0.27 × 10-12 m/V and χ(3) ~ 2.5 × 10-22 m2/V2 for silica fibers.Recently, the white (w) channel has been incorporated in various forms into color filter arrays (CFAs). The advantage of using the W channel is that W pixels have less noise than RGB pixels; therefore, under low-light conditions, pixels with high fidelity can be obtained. However, RGBW CFAs normally suffer from spatial resolution degradation due to a smaller number of color pixels than in RGB CFAs. GW9662 Therefore, even though the reconstructed colors have higher sensitivity, which results in larger CPSNR values, there are some color aliasing artifacts due to a low resolution. In this paper, we propose a rank minimization-based color interpolation method with a colorization constraint for the RGBW format with a large number of W pixels. The rank minimization can achieve a broad interpolation and preserve the structure in the image, and it thereby eliminates the color artifacts. However, the colors fade from this global process. Therefore, we further incorporate a colorization constraint into the rank minimization process for better reproduction of the colors.
Website: https://www.selleckchem.com/products/gw9662.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team