Notes
Notes - notes.io |
Pericentromeric heterochromatin is mostly composed of repeated DNA sequences, which are prone to aberrant recombination during double-strand break (DSB) repair. Studies in Drosophila and mouse cells revealed that 'safe' homologous recombination (HR) repair of these sequences relies on the relocalization of repair sites to outside the heterochromatin domain before Rad51 recruitment. Relocalization requires a striking network of nuclear actin filaments (F-actin) and myosins that drive directed motions. Understanding this pathway requires the detection of nuclear actin filaments that are significantly less abundant than those in the cytoplasm, and the imaging and tracking of repair sites for long time periods. Here, we describe an optimized protocol for live cell imaging of nuclear F-actin in Drosophila cells, and for repair focus tracking in mouse cells, including imaging setup, image processing approaches, and analysis methods. We emphasize approaches that can be applied to identify the most effective fluorescent markers for live cell imaging, strategies to minimize photobleaching and phototoxicity with a DeltaVision deconvolution microscope, and image processing and analysis methods using SoftWoRx and Imaris software. These approaches enable a deeper understanding of the spatial and temporal dynamics of heterochromatin repair and have broad applicability in the fields of nuclear architecture, nuclear dynamics, and DNA repair.Homologous recombination (HR) has been extensively studied in response to DNA double-strand breaks (DSBs). In contrast, much less is known about how HR deals with DNA lesions other than DSBs (e.g., at single-stranded DNA) and replication forks, despite the fact that these DNA structures are associated with most spontaneous recombination events. A major handicap for studying the role of HR at non-DSB DNA lesions and replication forks is the difficulty of discriminating whether a recombination protein is associated with the non-DSB lesion per se or rather with a DSB generated during their processing. Here, we describe a method to follow the in vivo binding of recombination proteins to non-DSB DNA lesions and replication forks. This approach is based on the cleavage and subsequent electrophoretic analysis of the target DNA by the recombination protein fused to the micrococcal nuclease.CRISPR/Cas9 technology can be used to investigate how double-strand breaks (DSBs) occurring in constitutive heterochromatin are getting repaired. This technology can be used to induce specific breaks on mouse pericentromeric heterochromatin, by using a guide RNA specific for the major satellite repeats and co-expressing it with Cas9. Those clean DSBs can be visualized later by confocal microscopy. More specifically, immunofluorescence can be used to visualize the main factors of each DSB repair pathway and quantify their percentage and pattern of recruitment at the heterochromatic region.Among the types of damage, DNA double-strand breaks (DSBs) (provoked by various environmental stresses, but also during normal cell metabolic activity) are the most deleterious, as illustrated by the variety of human diseases associated with DSB repair defects. DSBs are repaired by two groups of pathways homologous recombination (HR) and nonhomologous end joining. These pathways do not trigger the same mutational signatures, and multiple factors, such as cell cycle stage, the complexity of the lesion and also the genomic location, contribute to the choice between these repair pathways. To study the usage of the HR machinery at DSBs, we propose a genome-wide method based on the chromatin immunoprecipitation of the HR core component Rad51, followed by high-throughput sequencing.The ribosomal RNA (rDNA) sequence is the most abundant repetitive element in the budding yeast genome and forms a tandem cluster of ~100-200 copies. Cells frequently change their rDNA copy number, making rDNA the most unstable region in the budding yeast genome. The rDNA region experiences programmed replication fork arrest and subsequent formation of DNA double-strand breaks (DSBs), which are the main drivers of rDNA instability. The rDNA region offers a unique system to understand the mechanisms that respond to replication fork arrest as well as the mechanisms that regulate repeat instability. This chapter describes three methods to assess rDNA instability.Upon telomerase inactivation telomeres are getting shorter at each round of DNA replication and progressively lose capping functions and hence protection against homologous recombination. In addition, telomerase-minus cells undergo a round of stochastic DNA damage before the bulk of telomeres become critically short because telomeres are difficult regions to replicate. Although most of the cells will enter finally replicative senescence, those that unleash recombination can eventually recover functional telomeres and growth capacity. Formation of these survivors in yeast depends on various recombination mechanisms. Here, we present assays that we developed to analyze and quantify recombination at telomeres.The semiconservative nature of DNA replication allows the differential labeling of sister chromatids that is the fundamental requirement to perform the sister-chromatid exchange (SCE) assay. SCE assay is a powerful technique to visually detect the physical exchange of DNA between sister chromatids. SCEs could result as a consequence of DNA damage repair by homologous recombination (HR) during DNA replication. Here, we provide the detailed protocol to perform the SCE assay in cultured human cells. Cells are exposed to the thymidine analog 5-bromo-2'-deoxyuridine (BrdU) during two cell cycles, resulting in the two sister chromatids having differential incorporation of the analog. After metaphase spreads preparation and further processing, SCEs are nicely visualized under the microscope.The perturbation of the DNA replication process is a threat to genome stability and is an underlying cause of cancer development and numerous human diseases. It has become central to understanding how stressed replication forks are processed to avoid their conversion into fragile and pathological DNA structures. find more The engineering of replication fork barriers (RFBs) to conditionally induce the arrest of a single replisome at a defined locus has made a tremendous impact in our understanding of replication fork processing. Applying the bidimensional gel electrophoresis (2DGE) technique to those site-specific RFBs allows the visualization of replication intermediates formed in response to replication fork arrest to investigate the mechanisms ensuring replication fork integrity. Here, we describe the 2DGE technique applied to the site-specific RTS1-RFB in Schizosaccharomyces pombe and explain how this approach allows the detection of arrested forks undergoing nascent strands resection.
Website: https://www.selleckchem.com/products/bi-3406.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team