Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Improving our understanding of damage thresholds for resident cells and how these cells respond to bioelectrical cues may offer promising steps forward in the field of tendon regeneration.
The field of orthopaedics continues to advance and improve with the development of regenerative approaches for musculoskeletal injuries, especially for tendon, and deeper exploration in this area will lead to improved clinical outcomes.
The field of orthopaedics continues to advance and improve with the development of regenerative approaches for musculoskeletal injuries, especially for tendon, and deeper exploration in this area will lead to improved clinical outcomes.Previous generations of face recognition algorithms differ in accuracy for images of different races (race bias). Here, we present the possible underlying factors (data-driven and scenario modeling) and methodological considerations for assessing race bias in algorithms. We discuss data-driven factors (e.g., image quality, image population statistics, and algorithm architecture), and scenario modeling factors that consider the role of the "user" of the algorithm (e.g., threshold decisions and demographic constraints). To illustrate how these issues apply, we present data from four face recognition algorithms (a previous-generation algorithm and three deep convolutional neural networks, DCNNs) for East Asian and Caucasian faces. read more First, dataset difficulty affected both overall recognition accuracy and race bias, such that race bias increased with item difficulty. Second, for all four algorithms, the degree of bias varied depending on the identification decision threshold. To achieve equal false accept rates (FARs), East Asian faces required higher identification thresholds than Caucasian faces, for all algorithms. Third, demographic constraints on the formulation of the distributions used in the test, impacted estimates of algorithm accuracy. We conclude that race bias needs to be measured for individual applications and we provide a checklist for measuring this bias in face recognition algorithms.COVID-19 was initially characterized as a disease primarily of the lungs, but it is becoming increasingly clear that the SARS-CoV2 virus is able to infect many organs and cause a broad pathological response. The primary infection site is likely to be a mucosal surface, mainly the lungs or the intestine, where epithelial cells can be infected with virus. Although it is clear that virus within the lungs can cause severe pathology, driven by an exaggerated immune response, infection within the intestine generally seems to cause minor or no symptoms. In this review, we compare the disease processes between the lungs and gastrointestinal tract, and what might drive these different responses. As the microbiome is a key part of mucosal barrier sites, we also consider the effect that microbial species may play on infection and the subsequent immune responses. Because of difficulties obtaining tissue samples, there are currently few studies focused on the local mucosal response rather than the systemic response, but understanding the local immune response will become increasingly important for understanding the mechanisms of disease in order to develop better treatments.Schizophrenia is a severe neuropsychiatric disorder associated with a wide array of transcriptomic and neurobiochemical changes. Genome-wide transcriptomic profiling conducted in postmortem brain have provided novel insights into the pathophysiology of this disorder, and identified biological processes including immune/inflammatory-related responses, metabolic, endocrine, and synaptic function. However, few studies have investigated whether similar changes are present in peripheral tissue. Here, we used RNA-sequencing to characterize transcriptomic profiles of lymphocytes in 18 nonpsychotic controls and 19 individuals with schizophrenia. We identified 2819 differentially expressed transcripts (Pnominal 0.5) highlighted immune/inflammatory responses as key biological processes in our dataset. Differentially expressed genes in lymphocytes were highly enriched in gene expression profiles associated with cortex layer 5a and immune cells. Thus, we investigated whether the changes in transcripts levels observed in lymphocytes could also be detected in the prefrontal cortex (PFC, BA10) in a second replication cohort of schizophrenia subjects. Remarkably, mRNA levels detected in the PFC and lymphocytes were in strong agreement, and measurements obtained using RNA-sequencing positively correlated with data obtained by reverse transcriptase-quantitative polymerase chain reaction analysis. Collectively, our work supports a role for immune dysfunction in the pathogenesis of schizophrenia and suggests that peripheral markers can be used as accessible surrogates to investigate putative central nervous system disruptions.
Although intracranial metastatic disease (IMD) is a frequent complication of cancer, most cancer registries do not capture these cases. Consequently, a data-gap exists, which thwarts system-level quality improvement efforts. The purpose of this investigation was to determine the real-world burden of IMD.
Patients diagnosed with a non-CNS cancer between 2010 and 2018 were identified from the Ontario Cancer Registry. IMD was identified by scanning hospital administrative databases for cranial irradiation or coding for a secondary brain malignancy (ICD-10 code C793).
25,478 of 601,678 (4.2%) patients with a diagnosis of primary cancer were found to have IMD. The median time from primary cancer diagnosis to IMD was 5.2 (0.7, 15.4) months and varied across disease sites, for example, 2.1 months for lung, 7.3 months for kidney, and 22.8 months for breast. Median survival following diagnosis with IMD was 3.7 months. Lung cancer accounted for 60% of all brain metastases, followed by breast cancer (11%) and melanoma (6%). More advanced stage at diagnosis and younger age were associated with a higher likelihood of developing IMD (
< .0001). IMD was also associated with triple-negative breast cancers and ductal histology (
< .001), and with small-cell histology in patients with lung cancer (
< .0001). The annual incidence of IMD was 3,520, translating to 24.2 per 100,000 persons.
IMD represents a significant burden in patients with systemic cancers and is a significant cause of cancer mortality. Our findings support measures to actively capture incidents of brain metastasis in cancer registries.
IMD represents a significant burden in patients with systemic cancers and is a significant cause of cancer mortality. Our findings support measures to actively capture incidents of brain metastasis in cancer registries.
Here's my website: https://www.selleckchem.com/products/vt103.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team