Notes
Notes - notes.io |
Almost every ecosystem on this planet is teeming with microbial communities made of diverse bacterial species. At a reductionist view, many of these bacteria form pairwise interactions, but, as the field of view expands, the neighboring organisms and the abiotic environment can play a crucial role in shaping the interactions between species. Over the years, a strong foundation of knowledge has been built on isolated pairwise interactions between bacteria, but now the field is advancing toward understanding how cohabitating bacteria and natural surroundings affect these interactions. Use of bottom-up approaches, piecing communities together, and top-down approaches that deconstruct communities are providing insight on how different species interact. In this review, we highlight how studies are incorporating more complex communities, mimicking the natural environment, and recurring findings such as the importance of cooperation for stability in harsh environments and the impact of bacteria-induced environmental pH shifts. Additionally, we will discuss how omics are being used as a top-down approach to identify previously unknown interspecies bacterial interactions and the challenges of these types of studies for microbial ecology.Interest in male infertility has increased, as it plays an important role in up to 50% of couples struggling with infertility, which is an estimated 48.5 million couples globally. Despite recent advances, diagnosing and treating male infertility remain a significant clinical challenge owing to complex multifactorial pathways and the diversity of treatment options. This review will assess current controversial topics on male infertility such as the use of home-based semen testing, management of subclinical varicocele, and recent advances in the field of sperm proteomics."The bacterial vaginosis syndrome" has significant adverse effects for women and babies, including preterm birth and increased risk of acquisition of sexually transmitted infections and HIV. see more Currently, the gold standard for diagnosis is Gram stain microscopy of vaginal secretions, which is not readily available, is somewhat subjective, and does not differentiate between the likely different subtypes of vaginal dysbioses that may have different etiologies, microbiology, responses to antibiotics, and phenotypic outcomes. With new information from molecular-based, cultivation-independent studies, there is increasing interest in the use of molecular techniques for the diagnosis of bacterial vaginosis. We reviewed the current evidence on and the rationale behind the use of molecular techniques for the diagnosis of bacterial vaginosis. We found a number of commercially available molecular diagnostic tests, a few of which have US Food and Drug Administration (FDA) and/or Conformité Européenne in vitro diagnostic (CE-IVD) approval, and we have compared their performance with respect to sensitivities and specificities. Molecular-based tests have the advantage of objectivity, quantification, detection of fastidious organisms, and validity for self-obtained vaginal swabs. The performance of the molecular tests against standard microscopy is impressive, but further education of users on interpretation is needed. Bacterial vaginosis is the major cause of vaginal dysbiosis and should be recognized for the threat it is to women's genital tract health. Quantitative assessment of microbial abundance, the diversity of other organisms present, specific primers for gene sequence regions, and clades and biovars of target microbes should be recognized and incorporated into future molecular diagnostic tests to better differentiate between vaginal eubiosis and dysbiosis.The last few years have seen tremendous advances in CRISPR-mediated genome editing. Great efforts have been made to improve the efficiency, specificity, editing window, and targeting scope of CRISPR/Cas9-mediated transgene knock-in and gene correction. In this article, we comprehensively review recent progress in CRISPR-based strategies for targeted transgene knock-in and gene correction in both homology-dependent and homology-independent approaches. We cover homology-directed repair (HDR), synthesis-dependent strand annealing (SDSA), microhomology-mediated end joining (MMEJ), and homology-mediated end joining (HMEJ) pathways for a homology-dependent strategy and alternative DNA repair pathways such as non-homologous end joining (NHEJ), base excision repair (BER), and mismatch repair (MMR) for a homology-independent strategy. We also discuss base editing and prime editing that enable direct conversion of nucleotides in genomic DNA without damaging the DNA or requiring donor DNA. Notably, we illustrate the key mechanisms and design principles for each strategy, providing design guidelines for multiplex, flexible, scarless gene insertion and replacement at high efficiency and specificity. In addition, we highlight next-generation base editors that provide higher editing efficiency, fewer undesired by-products, and broader targeting scope.Severe vitamin D deficiency-25-hydroxyvitamin D (25OHD) concentrations below around 25-30 nmol/L-may lead to growth plate disorganization and mineralization abnormalities in children (rickets) and mineralization defects throughout the skeleton (osteomalacia) and proximal muscle weakness. Both problems are reversed with vitamin D treatment. Apart from this musculoskeletal dysfunction at very low vitamin D levels, there is apparent inconsistency in the available data about whether concentrations of 25OHD below around 50 nmol/L cause muscle function impairment and increase the risk of fracture. This narrative review provides evidence to support the contention that improving vitamin D status, up to around 50 nmol/L, plays a small causal role in optimizing bone and muscle function as well as reducing overall mortality.Osteosarcoma is the most common bone cancer in adolescents and young adults, but it is a rare cancer with no improvement in patient survival in the last four decades. The main problem of this bone tumor is its evolution toward lung metastatic disease, despite the current treatment strategy (chemotherapy and surgery). To further improve survival, there is a strong need for new therapies that control osteosarcoma cells with metastatic potential and their favoring tumor microenvironment (ME) from the diagnosis. However, the complexity and heterogeneity of those tumor cell genomic/epigenetic and biology, the diversity of tumor ME where it develops, the sparsity of appropriate preclinical models, and the heterogeneity of therapeutic trials have rendered the task difficult. No tumor- or ME-targeted drugs are routinely available in front-line treatment. This article presents up-to-date information from preclinical and clinical studies that were recently published or presented in recent meetings which we hope might help change the osteosarcoma treatment landscape and patient survival in the near future.
Homepage: https://www.selleckchem.com/products/sant-1.html
|
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team