Notes
Notes - notes.io |
Male trees demonstrated a stronger Cu absorption ability with a bioconcentration factor 2.30 times that of females. Significant changes in pigment content, membrane lipid peroxidation, and protein oxidation (carbonyl) also indicated that females were more sensitive than males to Cu- and Pb-induced stress. The higher Cu and Pb tolerance in males correlated with better H2O2 scavenging ability and proline accumulation. Nevertheless, the combined stress from both Cu and Pb yielded greater negative effect on the growth and physiology of P. yunnanensis for both sexes. Achievement of spatiotemporal control of growth factors production remains a main goal in tissue engineering. U0126 In the present work, we combined inducible transgene expression and near infrared (NIR)-responsive hydrogels technologies to develop a therapeutic platform for bone regeneration. A heat-activated and dimerizer-dependent transgene expression system was incorporated into mesenchymal stem cells to conditionally control the production of bone morphogenetic protein 2 (BMP-2). Genetically engineered cells were entrapped in hydrogels based on fibrin and plasmonic gold nanoparticles that transduced incident energy of an NIR laser into heat. In the presence of dimerizer, photoinduced mild hyperthermia induced the release of bioactive BMP-2 from NIR-responsive cell constructs. A critical size bone defect, created in calvaria of immunocompetent mice, was filled with NIR-responsive hydrogels entrapping cells that expressed BMP-2 under the control of the heat-activated and dimerizer-dependent gene circuit. In animals that were treated with dimerizer, NIR irradiation of implants induced BMP-2 production in the bone lesion. Induction of NIR-responsive cell constructs conditionally expressing BMP-2 in bone defects resulted in the formation of new mineralized tissue, thus indicating the therapeutic potential of the technological platform. Sulfur dioxide (SO2) with the largest quantity and widest distribution in the atmosphere is closely related to many nervous system diseases via mitochondria respiration. It is of great significance to monitor this gaseous molecule during various physiological and pathological processes, but currently the task still remains challenging due to the lack of reliable tools. Through-bond energy transfer (TBET) is a relatively new strategy to fabricate ratiometric fluorescent probes, which does not need spectral overlap between the energy donor and acceptor while provides high energy-transfer efficiency. It offers strong dual fluorescence emission peaks as well as large wavelength differences between the two peaks, which increases the bioimaging resolution and reliability. Herein, we developed a TBET-based ratiometric probe (TBET-SO2) with a series of superior properties for in vivo SO2 imaging. Excited by near-infrared pulsed laser (810 nm), the probe undergoes TBET and produces far-red emission (611 nm). It achieved significant energy-transfer efficiency (90.5%) and large spectral gap between two peaks (△λ = 118 nm). Upon reacting with SO2, TBET-SO2 showed ~30-fold enhancement of ratiometric signal contributed by the baseline resolved emissions. A detection limit of as low as 0.09 μM was obtained. Furthermore, TBET-SO2 was successfully applied for visualizing the mitochondrial SO2 in living cells and mice brain tissue during the neuroinflammation process induced by SO2 pollution. In this paper, a three-dimensional fractional-order (FO) discrete Hopfield neural network (FODHNN) in the left Caputo discrete delta's sense is proposed, the dynamic behavior and synchronization of FODHNN are studied, and the system is applied to image encryption. First, FODHNN is shown to exhibit rich nonlinear dynamics behaviors. Phase portraits, bifurcation diagrams and Lyapunov exponents are carried out to verify chaotic dynamics in this system. Moreover, by using stability theorem of FO discrete linear systems, a suitable control scheme is designed to achieve synchronization of the FODHNN. Finally, image encryption system based on the chaotic FODHNN is presented. Some security analysis and tests are given to show the effective of the encryption system. Algae have been considered as a best feedstock for combating CO2. In the present study, two mixed microalgal cultures i.e. MAC1 and MAC2 were evaluated in batch mode with an extraneous supply of CO2 from the fermentation of wheat straw. Both the mixed cultures displayed promising CO2 sequestration potentials of 287 and 263 mg L-1d-1, respectively. The removal efficiencies in terms of ammonium, phosphate, chemical oxygen demand, and nitrate were found to be 87%, 78%, 68% and 65%, respectively. Enriching the tolerance of the microalgal consortia to CO2 supply and wastewater as the nutrient source significantly enhanced the lipid production for both the microalgae consortia. Lipid contents of MAC1 and MAC2 were observed to be 12.29 & 11.37%, respectively while the biomass yield from both the consortia was 0.36 g L-1. Total chlorophyll and protein contents of MAC1 and MAC2 were 14.27 & 12.28 µgmL-1 and 0.13 & 0.15 mgmL-1, respectively. Both the consortia found to have significant potential for CO2 sequestration, wastewater remediation and biofuel production. This research proposed an innovative approach to synchronously enhance the recovery of phosphorus (P) as vivianite and volatile fatty acids (VFAs) during waste activated sludge (WAS) and food waste (FW) co-fermentation. A high performance was achieved under 30% FW addition and pH uncontrolled, which gained 83.09% of TP recovery as high-purity vivianite (93.90%), together with efficient VFAs production (7671 mg COD/L). The FW supplement could enhance VFAs production and subsequently lower pH to contribute to the release of Fe2+ and PO43-. Also, it could dampen disrupting effects of strong acidic pH on microbial cells (lowering LDH release). Moreover, the flexible pH variation caused by biological acidification could maintain relatively higher microbial activities (increasing enzymes' activities), which was advantageous to the biological effects involved in Fe2+ and PO43 release and VFAs generation. Therefore, this research provide a promising and economic alternative to dispose of WAS and FW simultaneously for valuable resource recovery.
Homepage: https://www.selleckchem.com/products/U0126.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team