NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

A General Cassette-Based Technique for the Dissolution associated with Strong Targets.
0 events/hour and an intraclass correlation coefficient of 0.985. click here The neural network approach for automatic scoring of respiratory events achieved high accuracy and good agreement with manual scoring. The presented neural network could be used for improving the efficiency of sleep apnea diagnostics or for analysis of large research datasets that are unfeasible to score manually. In addition, since the neural network scores individual respiratory events, the automatic scoring can be easily reviewed manually if desired.The rapidly increasing volumes of data and the need for big data analytics have emphasized the need for algorithms that can accommodate incomplete or noisy data. The concept of recurrency is an important aspect of signal processing, providing greater robustness and accuracy in many situations, such as biological signal processing. Probabilistic fuzzy neural networks (PFNN) have shown potential in dealing with uncertainties associated with both stochastic and nonstochastic noise simultaneously. Previous research work on this topic has addressed either the fuzzy-neural aspects or alternatively the probabilistic aspects, but currently a probabilistic fuzzy neural algorithm with recurrent feedback does not exist. In this article, a PFNN with a recurrent probabilistic generation module (designated PFNN-R) is proposed to enhance and extend the ability of the PFNN to accommodate noisy data. A back-propagation-based mechanism, which is used to shape the distribution of the probabilistic density function of the fuzzy membership, is also developed. The objective of the work was to develop an approach that provides an enhanced capability to accommodate various types of noisy data. We apply the algorithm to a number of benchmark problems and demonstrate through simulation results that the proposed technique incorporating recurrency advances the ability of PFNNs to model time-series data with high intensity, random noise.While the deep convolutional neural network (DCNN) has achieved overwhelming success in various vision tasks, its heavy computational and storage overhead hinders the practical use of resource-constrained devices. Recently, compressing DCNN models has attracted increasing attention, where binarization-based schemes have generated great research popularity due to their high compression rate. In this article, we propose modulated convolutional networks (MCNs) to obtain binarized DCNNs with high performance. We lead a new architecture in MCNs to efficiently fuse the multiple features and achieve a similar performance as the full-precision model. The calculation of MCNs is theoretically reformulated as a discrete optimization problem to build binarized DCNNs, for the first time, which jointly consider the filter loss, center loss, and softmax loss in a unified framework. Our MCNs are generic and can decompose full-precision filters in DCNNs, e.g., conventional DCNNs, VGG, AlexNet, ResNets, or Wide-ResNets, into a compact set of binarized filters which are optimized based on a projection function and a new updated rule during the backpropagation. Moreover, we propose modulation filters (M-Filters) to recover filters from binarized ones, which lead to a specific architecture to calculate the network model. Our proposed MCNs substantially reduce the storage cost of convolutional filters by a factor of 32 with a comparable performance to the full-precision counterparts, achieving much better performance than other state-of-the-art binarized models.Due to the movement expressiveness and privacy assurance of human skeleton data, 3D skeleton-based action inference is becoming popular in healthcare applications. These scenarios call for more advanced performance in application-specific algorithms and efficient hardware support. Warnings on health emergencies sensitive to response speed require low latency output and action early detection capabilities. Medical monitoring that works in an always-on edge platform needs the system processor to have extreme energy efficiency. Therefore, in this paper, we propose the MC-LSTM, a functional and versatile 3D skeleton-based action detection system, for the above demands. Our system achieves state-of-the-art accuracy on trimmed and untrimmed cases of general-purpose and medical-specific datasets with early-detection features. Further, the MC-LSTM accelerator supports parallel inference on up to 64 input channels. The implementation on Xilinx ZCU104 reaches a throughput of 18 658 Frames-Per-Second (FPS) and an inference latency of 3.5 ms with the batch size of 64. Accordingly, the power consumption is 3.6 W for the whole FPGA+ARM system, which is 37.8x and 10.4x more energy-efficient than the high-end Titan X GPU and i7-9700 CPU, respectively. Meanwhile, our accelerator also keeps a 4 ∼ 5x energy efficiency advantage against the low-power high-performance Firefly-RK3399 board carrying an ARM Cortex-A72+A53 CPU. We further synthesize an 8-bit quantized version on the same hardware, providing a 48.8% increase in energy efficiency under the same throughput.The novel coronavirus (COVID-19) infections have adopted the shape of a global pandemic now, demanding an urgent vaccine design. The current work reports contriving an anti-coronavirus peptide scanner tool to discern anti-coronavirus targets in the embodiment of peptides. The proffered CoronaPep tool features the fast fingerprinting of the anti-coronavirus target serving supreme prominence in the current bioinformatics research. The anti-coronavirus target protein sequences reported from the current outbreak are scanned against the anti-coronavirus target data-sets via CORONAPEP which provides precision-based anti-coronavirus peptides. This tool is specifically for the coronavirus data, which can predict peptides from the whole genome, or a gene or protein's list. Besides it is relatively fast, accurate, userfriendly and can generate maximum output from the limited information. The availability of tools like CORONAPEP will immeasurably perquisite researchers in the discipline of oncology and structure-based drug design.The detection of drug-target interactions (DTIs) plays an important role in drug discovery and development, making DTI prediction urgent to be solved. Existing computational methods usually utilize drug similarity, target similarity and DTI information to make prediction, providing the convenience of fast time and low cost. However, they usually learn features for drugs and targets separately, lacking of a global consideration. In this study, we proposed a novel neighborhood-based global network model, named as NGN, to accurately predict DTIs from the global perspective. We designed a distance constraint for features of all entities (drugs and targets) in the latent space to ensure the close distance between adjacent entities, and defined a global probability matrix to compute the predicted DTI scores on our constructed neighborhood-based global network. Results showed that NGN obtained advantageous performance compared with other state-of-the-art methods, especially surpassing them by 4.2%-9.1% on AUPR values in the biggest dataset.
My Website: https://www.selleckchem.com/products/gsk503.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.