Notes
Notes - notes.io |
Reported antidiabetic medicinal plants with other properties such as antioxidant and antihyperlipidemic activities deliver new entities for the development of antidiabetic agents with multiple therapeutic targets. This is a comprehensive review on potential antidiabetic activities of the Sri Lankan medicinal plants that have been widely used in the traditional healthcare system. The information presented here would fill the gap between the use of them by traditional healers in the traditional medicine healthcare system in Sri Lanka and their potency for development of new drug entities in future.Skin wound healing is essential for recovery from injury, and delayed or impaired wound healing is a severe therapeutic challenge. Keratinocytes, a major component of the epidermis, play crucial roles in reepithelialization during wound healing including cell proliferation. Recent studies have shown that compounds from natural products have candidates for healing skin injury. Isoegomaketone (IK), isolated from leaves of Perilla frutescens var. crispa (Lamiaceae), has various bioactivities. However, the effect of IK on cutaneous wound healing processes has not been studied yet. In this study, we demonstrated that IK exhibits therapeutic wound healing effects using the human keratinocyte cell line HaCaT. Notably, IK promoted cell proliferation and migration in a dose-dependent manner in vitro, and treatment with 10 μM IK upregulated these processes by approximately 1.5-fold after 24 h compared with the control. IK induced the activation of the MAPK/ERK pathway and cell cycle progression to the S and G2/M phases. Thus, this study demonstrates IK as a potential candidate to upregulate wound healing that may provide therapeutic benefits to patients with delayed wound healing.Acute lung injury (ALI) is a series of syndromes with persistent inflammation and abnormally increased vascular permeability. GLPG3970 nmr Sosiho-tang (SSHT), a traditional herbal formula consisting of a mixture of seven herbs, has been used to treat allergic reactions and chronic hepatitis disease in East Asia. In this study, we determined whether SSHT has an inhibitory effect against lipopolysaccharide- (LPS-) induced acute lung injury (ALI) in mice. 0.05, 0.55, and 5.55 mg/kg of SSHT were orally administered to C57BL/6J mice for 7 days prior to the administration of LPS. After 2 h of LPS sensitization, lung tissues were collected to confirm the lung histology and ALI-related inflammatory factors. SSHT ameliorated the LPS-induced alveolar hemorrhage, alveolar wall thickening, and the shrinkage of the alveolar spaces in the ALI mice model. Proinflammatory cytokines including IL-6, TNF-α, and IFN-γ in the lung tissue were significantly regulated in the SSHT-treated groups compared to the LPS only-treated group. Also, increases of IL-6 and TNF-α and decrease of IFN-γ expressions were dose-dependently modulated by SSHT treatment in LPS-induced raw 264.7 cells. Additionally, the translocation of NF-κB into nucleus and phosphorylation of mitogen-activated protein (MAP) kinase were significantly attenuated by the treatment of SSHT in LPS-sensitized ALI mice. SSHT showed anti-inflammatory activities by inhibiting proinflammatory cytokines and NF-κB signaling in LPS-induced ALI. This study demonstrates that SSHT has preventive effects on LPS-induced ALI by regulating inflammatory responses as an alternative for treating lung diseases.Inflammation response is a regulated cellular process and excessive inflammation has been recognized in numerous diseases, such as cardiovascular disease, neurodegenerative disease, inflammatory bowel disease, and cancer. Tribulus terrestris L. (TT), also known as Bai Jili in Chinese, has been applied in traditional Chinese medicine for thousands of years while its anti-inflammatory activity and underlying mechanism are not fully elucidated. Here, we hypothesize Tribulus terrestris L. extract (BJL) which presents anti-inflammatory effect, and the action mechanism was also investigated. We employed the transgenic zebrafish line Tg(MPOGFP), which expresses green fluorescence protein (GFP) in neutrophils, and mice macrophage RAW 264.7 cells as the in vivo and in vitro model to evaluate the anti-inflammatory effect of BJL, respectively. The production of nitric oxide (NO) was measured by Griess reagent. The mRNA expression levels of inflammatory cytokines and inducible nitric oxide synthase (iNOS) were measured bynd the underlying mechanism was closely related to the inhibition of Akt/MAPKs and NF-κB/iNOS-NO signaling pathways.The dewaxed dichloromethane extract of Urolepis hecatantha and the compounds isolated from it were tested for their in vitro activity on Trypanosoma cruzi epimastigotes and Leishmania infantum promastigotes. The extract of U. hecatantha showed activity against both parasites with IC50 values of 7 µg/mL and 31 µg/mL, respectively. Fractionation of the dichloromethane extract led to the isolation of euparin, jaceidin, santhemoidin C, and eucannabinolide. The sesquiterpene lactones eucannabinolide and santhemoidin C were active on T. cruzi with IC50 values of 10 ± 2 µM (4.2 µg/mL) and 18 ± 3 µM (7.6 µg/mL), respectively. Euparin and santhemoidin C were the most active on L. infantum with IC50 values of 18 ± 4 µM (3.9 µg/mL) and 19 ± 4 µM (8.0 µg/mL), respectively. Eucannabinolide has also shown drug-like pharmacokinetic and toxicity properties.A variety of natural products have been explored for their antiobesity potential and widely used to develop dietary supplements for the prevention of weight gain from excess body fat. In an attempt to find a natural antiobesity agent, this study was designed to evaluate the antiobesity activity of a novel herbal formulation LI85008F composed of extracts from three medicinal plants in high-fat diet- (HFD-) induced obese mice. After the thirteen-week oral administration of the test materials to mice, the body weight gain, whole-body fat mass, adipose tissue weight, and the expression levels of obesity-related proteins were measured. Our results indicated that LI85008F can suppress body weight gain and lower whole-body fat mass in HFD-induced obese mice. Significant decreases in epididymal and retroperitoneal fat mass were observed in LI85008F-treated groups compared with the HFD-fed control group (p less then 0.05). Furthermore, the oral administration of LI85008F caused significant decreases in the expression level of adipogenic (C/EBPα and PPARγ) and lipogenic (ACC) markers and notable increases in the production level of thermogenetic (AMPKα, PGC1α and UCP1) and lipolytic (HSL) proteins.
My Website: https://www.selleckchem.com/products/glpg3970.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team