Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
By using the learned spatial and spectral low-rank structures, we formulate the proposed HSI super-resolution model as a variational optimization problem, which can be readily solved by the ADMM algorithm. Compared with state-of-the-art hyperspectral super-resolution methods, the proposed method shows better performance on three benchmark datasets in terms of both visual and quantitative evaluation.Whether in medical imaging, astronomy or remote sensing, the data are increasingly complex. In addition to the spatial dimension, the data may contain temporal or spectral information that characterises the different sources present in the image. The compromise between spatial resolution and temporal/spectral resolution is often at the expense of spatial resolution, resulting in a potentially large mixing of sources in the same pixel/voxel. Source separation methods must incorporate spatial information to estimate the contribution and signature of each source in the image. We consider the particular case where the position of the sources is approximately known thanks to external information that may come from another imaging modality or from a priori knowledge. We propose a spatially constrained dictionary learning source separation algorithm that uses e.g. high resolution segmentation map or regions of interest defined by an expert to regularise the source contribution estimation. The originality of the proposed model is the replacement of the sparsity constraint classically expressed in the form of an l1 penalty on the localisation of sources by an indicator function exploiting the external source localisation information. The model is easily adaptable to different applications by adding or modifying the constraints on the sources properties in the optimisation problem. The performance of this algorithm has been validated on synthetic and quasi-real data, before being applied to real data previously analysed by other methods of the literature in order to compare the results. To illustrate the potential of the approach, different applications have been considered, from scintigraphic data to astronomy or fMRI data.Few-shot semantic segmentation remains an open problem because limited support (training) images are insufficient to represent the diverse semantics within target categories. Conventional methods typically model a target category solely using information from the support image(s), resulting in incomplete semantic activation. In this paper, we propose a novel few-shot segmentation approach, termed harmonic feature activation (HFA), with the aim to implement dense support-to-query semantic transform by incorporating the features of both query and support images. HFA is formulated as a bilinear model, which takes charge of the pixel-wise dense correlation (bilinear feature activation) between query and support images in a systematic way. HFA incorporates a low-rank decomposition procedure, which speeds up bilinear feature activation with negligible performance cost. In addition, a semantic diffusion procedure is fused with HFA, which further improves the global harmony and local consistency of the feature activation. Extensive experiments on commonly used datasets (PASCAL VOC and MS COCO) show that HFA improves the state-of-the-arts with significant margins. Code is available at https//github.com/Bibikiller/HFA.Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of deep learning (DL) has prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation models, examine the widely used datasets, compare performances, and discuss promising research directions.Future activity anticipation is a challenging problem in egocentric vision. As a standard future activity anticipation paradigm, recursive sequence prediction suffers from the accumulation of errors. To address this problem, we propose a simple and effective Self-Regulated Learning framework, which aims to regulate the intermediate representation consecutively to produce representation that (a) emphasizes the novel information in the frame of the current time-stamp in contrast to previously observed content, and (b) reflects its correlation with previously observed frames. The former is achieved by minimizing a contrastive loss, and the latter can be achieved by a dynamic reweighing mechanism to attend to informative frames in the observed content with a similarity comparison between feature of the current frame and observed frames. The learned final video representation can be further enhanced by multi-task learning which performs joint feature learning on the target activity labels and the automatically detected action and object class tokens. SRL sharply outperforms existing state-of-the-art in most cases on two egocentric video datasets and two third-person video datasets. Its effectiveness is also verified by the experimental fact that the action and object concepts that support the activity semantics can be accurately identified.To solve the low spatial and/or temporal resolution problem which the conventional hyperspectral cameras often suffer from, coded hyperspectral imaging systems have attracted more attention recently. Recovering a hyperspectral image (HSI) from its corresponding coded image is an ill-posed inverse problem, and learning accurate prior of HSI is essential to solve this inverse problem. In this paper, we present an effective convolutional neural network (CNN) based method for coded HSI reconstruction, which learns the deep prior from the external dataset as well as the internal information of input coded image with spatial-spectral constraint. Specifically, we first develop a CNN-based channel attention reconstruction network to effectively exploit the spatial-spectral correlation of the HSI. Then, the reconstruction network is learned by leveraging an arbitrary external hyperspectral dataset to exploit the general spatial-spectral correlation under adversarial loss. Resiquimod manufacturer Finally, we customize the network by internal learning with spatial-spectral constraint and total variation regularization for each coded image, which can make use of the internal imaging model to learn specific prior for current desirable image and effectively avoids overfitting.
Homepage: https://www.selleckchem.com/products/resiquimod.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team