Notes
![]() ![]() Notes - notes.io |
Growing evidence suggests that autism spectrum disorder (ASD) is strongly associated with dysbiosis in the gut microbiome, with the exact mechanisms still unclear. We have proposed a novel analytic strategy-quasi-paired cohort-and applied it to a metagenomic study of the ASD microbiome. By comparing paired samples of ASD and neurotypical subjects, we have identified significant deficiencies in ASD children in detoxifying enzymes and pathways, which show a strong correlation with biomarkers of mitochondrial dysfunction. TCS7009 Diagnostic models based on these detoxifying enzymes accurately distinguished ASD individuals from controls, and the dysfunction score inferred from the model increased with the clinical rating scores of ASD. In summary, our results suggest a previously undiscovered potential role of impaired intestinal microbial detoxification in toxin accumulation and mitochondrial dysfunction, a core component of ASD pathogenesis. These findings pave the way for designing future therapeutic strategies to restore microbial detoxification capabilities for patients with ASD.Alzheimer's disease (AD) lacks protein biomarkers reflective of its diverse underlying pathophysiology, hindering diagnostic and therapeutic advancements. Here, we used integrative proteomics to identify cerebrospinal fluid (CSF) biomarkers representing a wide spectrum of AD pathophysiology. Multiplex mass spectrometry identified ~3500 and ~12,000 proteins in AD CSF and brain, respectively. Network analysis of the brain proteome resolved 44 biologically diverse modules, 15 of which overlapped with the CSF proteome. CSF AD markers in these overlapping modules were collapsed into five protein panels representing distinct pathophysiological processes. Synaptic and metabolic panels were decreased in AD brain but increased in CSF, while glial-enriched myelination and immunity panels were increased in brain and CSF. The consistency and disease specificity of panel changes were confirmed in >500 additional CSF samples. These panels also identified biological subpopulations within asymptomatic AD. Overall, these results are a promising step toward a network-based biomarker tool for AD clinical applications.Dysregulation of immune responses in the gut often associates with inflammatory bowel diseases (IBD). Mouse CD1d1, an ortholog of human CD1d mainly participating in lipid-antigen presentation to NKT cells, is able to generate intrinsic signals upon stimulation. Mice with macrophage-specific CD1d1 deficiency (LymCD1d1-/- ) acquire resistance to dextran sodium sulfate (DSS)-induced colitis, attributing to the transcriptional inhibition of NLRP3 inflammasome components. The hyperactivation of NLRP3 inflammasome accounts for gut epithelial proliferation and intestine-blood barrier integrity. Mechanistically, occupancy by the natural ligand glycosphingolipid iGb3, CD1d1 responds with intracellular Ser330 dephosphorylation thus to reduce the Peroxiredoxin 1 (PRDX1)-associated AKT-STAT1 phosphorylation and subsequent NF-κB activation, eventually causing transcriptional down-regulation of Nlrp3 and its immediate substrates Il1b and Il18 in macrophages. Therefore, the counterbalancing role of CD1d1 in macrophages appears to determine severity of DSS-mediated colitis in mice. These findings propose new intervention strategies for treating IBD and other inflammatory disorders.Heat shock factor-1 (HSF-1) is a master regulator of stress responses across taxa. Overexpression of HSF-1 or genetic ablation of its conserved negative regulator, heat shock factor binding protein 1 (HSB-1), results in robust life-span extension in Caenorhabditiselegans Here, we found that increased HSF-1 activity elevates histone H4 levels in somatic tissues during development, while knockdown of H4 completely suppresses HSF-1-mediated longevity. Moreover, overexpression of H4 is sufficient to extend life span. Ablation of HSB-1 induces an H4-dependent increase in micrococcal nuclease protection of both nuclear chromatin and mitochondrial DNA (mtDNA), which consequently results in reduced transcription of mtDNA-encoded complex IV genes, decreased respiratory capacity, and a mitochondrial unfolded protein response-dependent life-span extension. Collectively, our findings reveal a previously unknown role of HSB-1/HSF-1 signaling in modulation of mitochondrial function via mediating histone H4-dependent regulation of mtDNA gene expression and concomitantly acting as a determinant of organismal longevity.Thirty-two radiocarbon ages on bone, charcoal, and carbonized plant remains from 10 Clovis sites range from 11,110 ± 40 to 10,820 ± 10 14C years before the present (yr B.P.). These radiocarbon ages provide a maximum calibrated (cal) age range for Clovis of ~13,050 to ~12,750 cal yr B.P. This radiocarbon record suggests that Clovis first appeared at the end of the Allerød and is one of at least three contemporary archaeological complexes in the Western Hemisphere during the terminal Pleistocene. Stemmed projectile points in western North America are coeval and even older than Clovis, and the Fishtail point complex is well established in the southern cone of South America by ~12,900 cal yr B.P. Clovis disappeared ~12,750 cal yr B.P. at the beginning of the Younger Dryas, coincident with the extinction of the remaining North American megafauna (Proboscideans) and the appearance of multiple North American regional archaeological complexes.The nicotinamide adenine dinucleotide (NAD+/NADH) pair is a cofactor in redox reactions and is particularly critical in mitochondria as it connects substrate oxidation by the tricarboxylic acid (TCA) cycle to adenosine triphosphate generation by the electron transport chain (ETC) and oxidative phosphorylation. While a mitochondrial NAD+ transporter has been identified in yeast, how NAD enters mitochondria in metazoans is unknown. Here, we mine gene essentiality data from human cell lines to identify MCART1 (SLC25A51) as coessential with ETC components. MCART1-null cells have large decreases in TCA cycle flux, mitochondrial respiration, ETC complex I activity, and mitochondrial levels of NAD+ and NADH. Isolated mitochondria from cells lacking or overexpressing MCART1 have greatly decreased or increased NAD uptake in vitro, respectively. Moreover, MCART1 and NDT1, a yeast mitochondrial NAD+ transporter, can functionally complement for each other. Thus, we propose that MCART1 is the long sought mitochondrial transporter for NAD in human cells.
Read More: https://www.selleckchem.com/products/tc-s-7009.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team