Notes
Notes - notes.io |
Finally, single-cell observation and polymerase chain reactions (PCRs) demonstrated the application of the products made by elastic PDMS molds. Therefore, this processing method is a promising strategy for facile, low-cost, and higher precision microfabrication.β-NaYF4 microcrystals co-doped with Yb3+, Er3+/Tm3+, and Gd 3+ ions were synthesized via a hydrothermal method using rare-earth chlorides as the precursors. The SEM and XRD data show that the doped β-NaYF4 form uniform hexagonal prisms with an approximate size of 600-800 nm. The partial substitution of Y by Gd results in size reduction of microcrystals. Upconversion luminescence spectra of microcrystals upon 980 nm excitation contain characteristic intra-configurational ff bands of Er3+/Tm3+ ions. An addition of Gd3+ ions leads to a significant enhancement of upconversion luminescence intensity with maxima at 5 mol % of dopant.Undoped as well as (Co, Mn) co-doped Zinc oxides have been effectively developed on glass substrates, taking advantage of the spray pyrolysis procedure. The X-ray diffraction XRD as well as X-ray photoelectron spectroscopy (XPS) measurements have recognized a pure hexagonal wurtzite form of ZnO, and no other collateral phases such as MnO2 or CoO2 have been observed as a result of doping. The calculated values of the texture coefficient (TC) were between 0.15 and 5.14, indicating a dominant orientation along the (002) plane. The crystallite size (D) varies with the (Co, Mn) contents. The dislocation density (δ) as well as the residual microstrains increased after Co and Mn doping. Furthermore, the surface morphology of the films has been affected significantly by the Co and Mn incorporation, as shown by the scanning electron microscopy (SEM) investigation. The study of the optical properties exhibits a red shift of the band gap energy (Eg) with the (Co, Mn) co-doping. The magnetic measurements have shown that the undoped and (Co, Mn) co-doped ZnO thin films displayed room-temperature ferromagnetism (RTFM).Traditional silicon-based micro-electro-mechanical system (MEMS) safety and arming devices, such as electro-thermal and electrostatically driven MEMS safety and arming devices, experience problems of high insecurity and require high voltage drive. For the current electromagnetic drive mode, the electromagnetic drive device is too large to be integrated. In order to address this problem, we present a new micro electromagnetically driven MEMS safety and arming device, in which the electromagnetic coil is small in size, with a large electromagnetic force. We firstly designed and calculated the geometric structure of the electromagnetic coil, and analyzed the model using COMSOL multiphysics field simulation software. The resulting error between the theoretical calculation and the simulation of the mechanical and electrical properties of the electromagnetic coil was less than 2% under the same size. We then carried out a parametric simulation of the electromagnetic coil, and combined it with the actual processing capacity to obtain the optimized structure of the electromagnetic coil. Finally, the electromagnetic coil was processed by deep silicon etching and the MEMS casting process. The actual electromagnetic force of the electromagnetic coil was measured on a micro-mechanical test system, compared with the simulation, and the comparison results were analyzed.Metal complexes are currently potential therapeutic compounds. The acquisition of resistance by cancer cells or the effective elimination of cancer-affected cells necessitates a constant search for chemical compounds with specific biological activities. One alternative option is the transition metal complexes having potential as antitumor agents. Here, we present the current knowledge about the application of transition metal complexes bearing nickel(II), cobalt(II), copper(II), ruthenium(III), and ruthenium(IV). The cytotoxic properties of the above complexes causing apoptosis, autophagy, DNA damage, and cell cycle inhibition are described in this review.Water radical cations, (H2O)n+•, are of great research interest in both fundamental and applied sciences. Fundamental studies of water radical reactions are important to better understand the mechanisms of natural processes, such as proton transfer in aqueous solutions, the formation of hydrogen bonds and DNA damage, as well as for the discovery of new gas-phase reactions and products. In applied science, the interest in water radicals is prompted by their potential in radiobiology and as a source of primary ions for selective and sensitive chemical ionization. However, in contrast to protonated water clusters, (H2O)nH+, which are relatively easy to generate and isolate in experiments, the generation and isolation of radical water clusters, (H2O)n+•, is tremendously difficult due to their ultra-high reactivity. This review focuses on the current knowledge and unknowns regarding (H2O)n+• species, including the methods and mechanisms of their formation, structure and chemical properties.Frequency-domain spectroscopy (FDS) is demonstrated to be affected by electrode polarization and conductance behavior in the low-frequency ranges, which causes the unreliable prediction results of transformer cellulose insulation. see more In order to solve this issue, a fingerprint database based on the dielectric modulus is reported to predict the degree of polymerization (DP) and moisture content of cellulose insulation. In the current work, the relevant fingerprints that characterize the insulation conditions are obtained by studying the dielectric modulus curves of cellulose insulation with various insulation conditions, as well as the DC conductivity of transformer oil. Then, the dielectric modulus fingerprint database is established in the lab, and the accuracy of the reported fingerprint database is later verified. As a potential tool, the dielectric modulus fingerprint database is tested by several samples, and the results demonstrate that the accuracy of this method is more than 80%. In that respect, an interesting discovery of this paper is that the dielectric modulus fingerprint database may be a helpful tool for conditions prediction of the transformer cellulose insulation system.
My Website: https://www.selleckchem.com/products/tolebrutinib-sar442168.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team