Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Tubular architecture has been extensively exploited in diverse applications such as solar cells and sensors. However, the synthesis of microtubes with high aspect ratio using polymer templates has been rarely reported. In this study, we designed a facile avenue for the synthesis of well-aligned Au nanoparticle-agglomerate microtubes with an aspect ratio of ~ 30 using a hollow polyetherimide (PEI) template. The combination of wet phase inversion and use of a Cu grid mask enabled straightforward production of a hollow PEI template with vertically aligned tubular architecture. During wet-phase inversion, exchange between a solvent (N-methyl-2-pyrrolidone) and a non-solvent (water) occurred at the corners of the square mask cells rather than along their side, thereby producing pores at the corners due to geometrical and entropic factors. The hollow microtubes were comprised of agglomerated Au nanoparticles that coated the inner surfaces of the pores during an electroless plating process performed after wet-phase inversion. This finding is applicable to diverse applications such as sensors and catalysis.The ground state phases of ternary alloys of rare earth and group III nitride semiconductors have been investigated within the density functional theory. The most energetically favorable crystal phases among possible cubic and hexagonal structures, i.e., the rock salt, zinc blende, wurtzite, and hexagonal BN, were determined. The type of a unit cell and the lattice parameters of the materials are presented as a function of their composition. Furthermore, effects of strain on ground states of group III and rare earth nitride materials are discussed. The findings presented in this work discloses the wurtzite type materials as being stable with relatively low contents of rare earth elements. It is expected that the wurtzite phase will be very persistent only in the La-based systems. Nevertheless, the two-dimensional hexagonal atomic layers are revealed as being a metastable phase for all alloys studied. This finding supports the conclusion of previous experimental reports for Sc-doped GaN systems that the presence of rare earth ions in group III nitride materials leads to flattening of the wurtzite type layers.Trigonelline (TGN; 1-methylpyridin-1-ium-3-carboxylate) is a widely distributed alkaloid derived from plants. Since we previously found a neurite outgrowth effect of TGN, we hypothesised that TGN might help to improve memory deficits. Here, the efficacy of TGN in restoring amyloid β (Aβ)-induced axonal degeneration and in improving memory function was investigated in Alzheimer's disease 5XFAD model mice that overexpress mutated APP and PS1 genes. Exposure of Aβ25-35 for 3 days induced atrophy of axons and dendrites. Post treatment of TGN recovered the lengths of axons and dendrites. Following oral administration of TGN in mice, TGN itself was detected in the plasma and cerebral cortex. Oral administration of TGN to 5XFAD mice for 14 days showed significant improvement in object recognition memory (P less then 0.001) and object location memory (P less then 0.01). TGN administration also normalised neurofilament light levels in the cerebral cortex (P less then 0.05), which is an axonal damage-associated biomarker. Analysis of target proteins of TGN in neurons by a drug affinity responsive target stability (DARTS) method identified that creatine kinase B-type (CKB) is a direct binding protein of TGN. Fatostatin with a CKB inhibitor cancelled the TGN-induced axonal and dendritic growth. #link# In conclusion, we found for the first time that TGN penetrates the brain and may activate CKB, leading to axonal formation. This study shows the potential of TGN as a new drug candidate, and a new target molecule, CKB, in memory recovery signalling.Systematic experiments on European eel (Anguilla anguilla) in their juvenile, early life stage (glass eel), were conducted to provide new insights on the fish swimming performance and propose a framework of analysis to design swimming-performance experiments for bottom-dwelling fish. In particular, we coupled experimental and computational fluid dynamics techniques to (i) accommodate glass eel burst-and-coast swimming mode and estimate the active swimming time (tac), not considering coast and drift periods, (ii) estimate near-bottom velocities (Ub) experienced by the fish, rather than using bulk averages (U), (iii) investigate water temperature (T) influence on swimming ability, and (iv) identify a functional relation between Ub, tac and T. Results showed that burst-and-coast swimming mode was increasingly adopted by glass eel, especially when U was higher than 0.3 ms-1. Using U rather than Ub led to an overestimation of the fish swimming performance from 18 to 32%, on average. Under the range of temperatures analyzed (from 8 to 18 °C), tac was strongly influenced and positively related to T. As a final result, we propose a general formula to link near-bottom velocity, water temperature and active swimming time which can be useful in ecological engineering applications and reads as [Formula see text].Stunting remains a major public health concern in Ethiopia. Government needs to reshape and redesign new interventions to reduce stunting among under-five children. Hence, this study identified the problem according to location and risk factor. This study is a secondary data analysis of the 2016 Ethiopian Demographic and Health Survey. A total of 9588 children aged 0-59 months were included in the study. The spatial and multilevel logistic regression analyses were used to explore spatial heterogeneity and identify individual- and household-level factors associated with stunting and severe stunting. Spatial heterogeneity of stunting and severe stunting was seen across the study setting. Male children (AOR = 1.51, CI 1.16, 1.96); multiple births (AOR = 27.6, CI 10.73, 71.18); older children (AOR = 1.04, CI 1.01, 1.05) and anemic children (AOR = 3.21, CI 2.3, 4.49) were severely stunted at individual-level factors. Children from educated and malnourished mothers (respectively, AOR = 0.18, CI 0.05, 0.71; AOR = 5.
My Website: https://www.selleckchem.com/products/fatostatin.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team