Notes
Notes - notes.io |
Aquatic organisms are exposed to mixtures of chemicals that may interact. Mixtures of atrazine (ATR) and chlorpyrifos (CPF) may elicit synergic effects on the permanent inhibition of acetylcholinesterase (AChE) in certain aquatic organisms, causing severe damage. Mechanistic mathematical models of toxicokinetics and toxicodynamics (TD) may be used to better characterize and understand the interactions of these two chemicals. In this study, a previously published generic physiologically-based toxicokinetic (PBTK) model for fish was adapted to ATR and CPF. A sub-model of the kinetics of one of the main metabolites of CPF, chlorpyrifos-oxon (CPF-oxon), was included, as well as a TD model. Inhibition of two esterases, AChE and carboxylesterase, by ATR, CPF and CPF-oxon, was modeled using TD modeling of quantities of total and inactive esterases. Specific attention was given to the parameterization and calibration of the model to accurately predict the concentration and effects observed in the fish using Bayesian inference and published data from fathead minnow (Pimephales promelas), zebrafish (Danio rerio) and common carp (Cyprinus carpio L.). A PBTK-TD for mixtures was used to predict dose-response relationships for comparison with available adult fish data. Synergistic effects of a joint exposure to ATR and CPF could not be demonstrated in adult fish.Three Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (RCPs) are used to simulate future ozone (O3), nitrogen dioxide (NO2), and fine particulate matter (PM2.5) in the United Kingdom (UK) for the 2050s relative to the 2000s with an air quality model (AQUM) at a 12 km horizontal resolution. The present-day and future attributable fractions (AF) of mortality associated with long-term exposure to annual mean O3, NO2 and PM2.5 have accordingly been estimated for the first time for regions across England, Scotland and Wales. Across the three RCPs (RCP2.6, RCP6.0 and RCP8.5), simulated annual mean of the daily maximum 8-h mean (MDA8) O3 concentrations increase compared to present-day, likely due to decreases in NOx (nitrogen oxides) emissions, leading to less titration of O3 by NO. Annual mean NO2 and PM2.5 concentrations decrease under all RCPs for the 2050s, mostly driven by decreases in NOx and sulphur dioxide (SO2) emissions, respectively. The AF of mortality associated with long-term exposure to annual mean MDA8 O3 is estimated to increase in the future across all the regions and for all RCPs. Reductions in NO2 and PM2.5 concentrations lead to reductions in the AF estimated for future periods under all RCPs, for both pollutants. Total mortality burdens are also highly sensitive to future population projections. Accounting for population projections exacerbates differences in total UK-wide MDA8 O3-health burdens between present-day and future by up to a factor of ~3 but diminishes differences in NO2-health burdens. For PM2.5, accounting for future population projections results in additional UK-wide deaths brought forward compared to present-day under RCP2.6 and RCP6.0, even though the simulated PM2.5 concentrations for the 2050s are estimated to decrease. Thus, these results highlight the sensitivity of future health burdens in the UK to future trends in atmospheric emissions over the UK as well as future population projections.The present study focuses on optimizing the engine operating parameters of a dual-fuel (DF) engine. Producer gas (PG) and Honge oil methyl ester (HOME) are used as primary fuel and pilot fuel respectively for the operation. An experimental design matrix of 20 different combinations was considered using Design of Experiments (DoE), based on the central composite design (CCD) of response surface methodology (RSM). The effects of these combinations were experimentally investigated to calculate the performance and emission characteristics of the engine. The objective of the work is to maximize the Brake thermal efficiency (BTE) and minimize the exhaust gas temperature (EGT), nitrogen oxide (NOx), hydrocarbon (HC), and carbon monoxide (CO) emissions. The RSM model is developed using the experimental data and further, the operating parameters were optimized using the desirability approach. The optimized combination of operating parameters was obtained at 61.10% engine load, compression ratio (CR) of 18, and injection timing (IT) of 23.30° before top dead center (BTDC). The optimum responses corresponding to these operating conditions were found as 14.23%, 354.29 °C, 52.18 ppm, 39.53 ppm, and 0.51% for BTE, EGT, NOx, HC, and CO respectively with an overall desirability of 0.962. The optimized responses were validated experimentally at optimum input conditions and found to be within acceptable error levels. Further, an economic analysis of the optimized DF system is also carried out.The uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) by staple crops have gained much attention. However, the mechanism on phenanthrene xylem loading across plasma membrane is still unclear. selleck products In this study, we investigated the concentration dependence of phenanthrene xylem loading and the relationship between phenanthrene concentration and xylem sap pH. The impacts of metabolic inhibitor, temperature, and dissolved oxygen on phenanthrene concentration in xylem sap were observed as well. The Michaelis-Menten equation fits phenanthrene xylem loading across parenchyma cell membrane well and xylem sap pH decreases with the increase in treated phenanthrene concentration. Metabolic inhibitor, low temperature and low dissolved oxygen can suppress phenanthrene loading into xylem sap. The inhibitory rate of sodium vanadate on xylem sap phenanthrene is between 19.76% and 25.82%. Low temperature reduces phenanthrene concentration in xylem sap by 86.68%. Hypoxia (2 mg L-1) inhibits phenanthrene loading into xylem by 78.67%. Therefore, it is indicated that H+/phenanthrene cotransporter is implicated in phenanthrene loading into xylem. Our work offers a valuable model to understand the mechanism of PAH loading into xylem.Dinophysis acuta produces diarrhetic shellfish poisoning (DSP) toxins and pectenotoxins (PTX). It blooms in thermally-stratified shelf waters in late summer in temperate to cold temperate latitudes. Despite its major contribution to shellfish harvesting bans, little effort has been devoted to study its population dynamics in Chilean Patagonia. In 2017-2018, mesoscale distribution of harmful algal species (75 monitoring stations) revealed the initiation (late spring) and seasonal growth of a dense D. acuta population in the Aysén region, with maximal values at Puyuhuapi Fjord (PF). Vertical phytoplankton distribution and fine-resolution measurements of physical parameters along a 25-km transect in February 16th identified a 15-km (horizontal extension) subsurface thin layer of D. acuta from 4 to 8 m depth. This layer, disrupted at the confluence of PF with the Magdalena Sound, peaked at the top of the pycnocline (6 m, 15.9 °C, 23.4 psu) where static stability was maximal. By February 22nd, it deepened (8 m, 15.
Website: https://www.selleckchem.com/products/bgb-283-bgb283.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team