Notes
![]() ![]() Notes - notes.io |
Resolving late failure of dental implant is difficult and costly; however, only few reviews have addressed the risk factors associated with late failure of dental implant. The aim of this literature review was to summarize the influences of different potential risk factors on the incidence of late dental implant failure. The protocol of this systematic review was prepared and implemented based on the PRISMA (Preferred reporting items for systematic reviews and meta-analyses) guideline. In December 2018, studies published within the previous 10 years on late dental implant failure were selected by fulfilling the eligibility criteria and the risk factors identified in qualified studies were extracted by using a predefined extraction template. Fourteen eligible studies were assessed. The common risk factors for late failure were divided into three groups according to whether they were related to (1) the patient history (radiation therapy, periodontitis, bruxism and early implant failure), (2) clinical parameters (posterior implant location and bone grade 4) or (3) decisions made by the clinician (low initial stability, more than one implant placed during surgery, inflammation at the surgical site during the first year or using an overdenture with conus-type connection). Clinicians should be cautions throughout the treatment process of dental implant-from the initial examination to the treatment planning, surgical operation and prosthesis selection-in order to minimize the risk of late failure of dental implant.In recent years, molecular characterization and management of patients with systemic mastocytosis (SM) have greatly benefited from the application of advanced technologies. Highly sensitive and accurate assays for KIT D816V mutation detection and quantification have allowed the switch to non-invasive peripheral blood testing for patient screening; allele burden has prognostic implications and may be used to monitor therapeutic efficacy. Progress in genetic profiling of KIT, together with the use of next-generation sequencing panels for the characterization of associated gene mutations, have allowed the stratification of patients into three subgroups differing in terms of pathogenesis and prognosis i) patients with mast cell-restricted KIT D816V; ii) patients with multilineage KIT D816V-involvement; iii) patients with "multi-mutated disease". Thanks to these findings, new prognostic scoring systems combining clinical and molecular data have been developed. Selleckchem WP1066 Finally, non-genetic SETD2 histone methyltransferase loss of function has recently been identified in advanced SM. Assessment of SETD2 protein levels and activity might provide prognostic information and has opened new research avenues exploring alternative targeted therapeutic strategies. This review discusses how progress in recent years has rapidly complemented previous knowledge improving the molecular characterization of SM, and how this has the potential to impact on patient diagnosis and management.The development of solid materials that deliver nitric oxide (NO) are of interest for several therapeutic applications. Nevertheless, due to NO's reactive nature, rapid diffusion and short half-life, reporting their NO delivery characteristics is rather complex. The full knowledge of this parameter is fundamental to discuss the therapeutic utility of these materials, and thus, the NO quantification strategy must be carefully considered according to the NO-releasing scaffold type, to the expected NO-releasing amounts and to the medium of quantification. In this work, we explore and discuss three different ways of quantifying the release of NO in different biological fluids haemoglobin assay, Griess assay and NO electrochemical detection. For these measurements, different porous materials, namely zeolites and titanosilicates were used as models for NO-releasing platforms. The oxyhaemoglobin assay offers great sensitivity (nanomolar levels), but it is only possible to monitor the NO release while oxyhaemoglobin is not fully converted. On the other hand, Griess assay has low sensitivity in complex biological media, namely in blood, and interferences with media make NO measurements questionable. Nevertheless, this method can measure micromolar amounts of NO and may be useful for an initial screening for long-term release performance. The electrochemical sensor enabled real-time measurements in a variety of biological settings. However, measured NO is critically low in oxygenated and complex media, giving transient signals, which makes long-term quantification impossible. Despite the disadvantages of each method, the combination of all the results provided a more comprehensive NO release profile for these materials, which will help to determine which formulations are most promising for specific therapeutic applications. This study highlights the importance of using appropriate NO quantification tools to provide accurate reports.Food waste is a major environmental issue that must be tackled in order to achieve a sustainable food supply chain. Currently, in Spain there are no studies that examine the amounts and sources of plate waste (PW) produced by both household and out-of-home consumption. The present study aims to provide this information from a representative sample from the Spanish population. A total of 2009 individuals aged 9-75 years, from the ANIBES study ("anthropometric data, macronutrients and micronutrients intake, practice of physical activity, socioeconomic data and lifestyles in Spain"), completed a three-day dietary record, collected by a tablet device. Photographs of all foods and beverages consumed both at home and outside were taken before and after meals. Median PW across the total population was 7.3 (0.0-37.3) g/day and was significantly higher in females than males (p less then 0.05) and in children vs. adolescents, adults, and elderly (p less then 0.01). Regarding meals, PW across all age groups was higher at lunch (40%), dinner (27%), and breakfast (11%). The highest PW was observed for bread (25%) main courses (16%), first and second courses (15%), vegetables and fruits (12%), ready-to-eat meals (10%), cereals and grains (10%), oils and fats (10%), pulses (10%), meat products (8%), sauces and condiments (8%), and starters (8%). Our results reinforce the need for new strategies to focus on reducing plate leftovers, which are crucial from a nutritional, economic, and environmental point of view. Additionally, this evidence is important for relying on more accurate information on actual intakes when using dietary surveys.
Homepage: https://www.selleckchem.com/products/wp1066.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team