Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Soluble microbial products (SMP) classified as utilization-associated products (UAP) and biomass-associated products (BAP) are the predominant foulants determining fouling in tertiary filtration. However, the exact mechanisms of BAP and UAP generation when treating real wastewaters under cold temperatures remain unrevealed. This paper presents the first study linking biological processes and SMP formation when treating real wastewaters through a combination of bioprocess modelling and advanced SMP characterization. Further, the impact of low operating temperatures on SMP production which has received relatively little attention was studied in detail. The use of liquid chromatography-organic carbon detection (LC-OCD) revealed a significant increase in protein and polysaccharide concentrations in the treated effluents as temperature decreased with a more sensitive impact on polysaccharides. The generation of SMP from biomass decay (BAP) and substrate utilization (UAP) was derived from the LC-OCD data on the basis of protein and polysaccharide mass balances. UAP and BAP yields were estimated as the ratios of the observed generation rates to the rates of substrate utilization and endogenous decay respectively, which both declined as temperature increased. A strong correlation was observed between temperature and BAP/UAP yields whereas the generation of BAP was more temperature sensitive than UAP. Such process modelling can be employed to assist with the optimization of the design and operation of membrane processes when treating wastewaters under challenging conditions like low temperature.The presence of meso, macro, and microplastics (MPs) in aquatic environments has raised concerns due to their potential risks to aquatic as well as human life. Though plastics are considered to be inert in nature, MPs with toxic additives and accumulated contaminants have harmful ecological effects. Reports of absorption of MPs by internal tissues and toxicity in vital organs such as lung cells, liver, and brain cells have proved its serious health hazards. The study of plastic debris in the aquatic environment deserves special attention due to its ecotoxicological impact. UCL-TRO-1938 This review presents a detailed account of the assessment of plastic debris in marine as well as freshwater environments. The formation of MPs and their sources, sampling, isolation, identification and characterization methods adopted, and the prevalence of MPs in aquatic life are discussed. To the best of our knowledge, the present article is a first-ever comprehensive review covering the entire of India. Our review finds that, so far, very few studies have been carried out, and there is a paucity of information, especially on the prevalence of plastic debris in the freshwater environment, fish, and other aquatic animals in India. While major studies have been done at various coastal locations in the southern part of India and a few studies in the rest of India, south-eastern states remain neglected. Toxicological studies on various life forms, including humans, are lacking. The present review also fills the gap in our knowledge of the various locations studied across India and can guide future research.Fruit production has been expanding due to the pursuit of healthier lifestyles in China. Determining the greenhouse gas (GHG) emissions status of the orchard system could contribute to adopting appropriate measures to alleviate climate change pressure from the growing fruit production. In this study, the net GHG balance and GHG intensity (GHGI) in the Chinese fruit production were estimated at the regional level using a meta-analysis based on databases compiled from relevant publications during 2000-2019, including soil nitrous oxide (N2O) and methane (CH4) emissions or uptake, upstream carbon dioxide (CO2) emissions related to farm practices, and the change of soil organic carbon (SOC) storage from the life cycle perspective. Results showed that the net GHG balance and GHGI varied among six regions, with ranges of 6.4 ± 0.3 to 10.0 ± 0.6 Mg CO2e ha-1 yr-1, and 2.2 ± 0.2 to 3.0 ± 0.2 kg CO2e kg-1, respectively. Synthetic nitrogen (N) fertilization was the largest source of overall GHG emissions from fruit production throughout China, accounting for 46% and ranging from 43% to 55% in the six fruit production regions. Fertilizer-induced N2O emissions were responsible for 22-31% of the total GHG emissions, and the N2O-N emission factor was identified as 0.7%. Also, power use for irrigation contributed a non-negligible 17% to the emissions on a national level, yet with large regional variations. In addition, fruit production in North, Northeast, Central, and East, and South China have relatively lower GHGIs than in Northwest and Southwest China. The estimated total GHG emissions from the Chinese fruit production were 102 Tg CO2e, with the contribution of SOC change to a decrease by 11% for the year 2018. Our results highlight an urgency to lower fruit production-related carbon emissions by extending optimized N fertilization and irrigation modes in China's orchard system.The analytical technique DGT (Diffusive Gradients in Thin-films) is able to gain access to a wealth of information by carefully interpreting accumulation data from passive samplers with different configurations (i.e. different thicknesses of its constituent layers). A set of DGT devices were simultaneously deployed in solutions of Ni and nitrilotriacetic acid (NTA) of different concentrations to measure the availability of Ni in these solutions. Accumulations indicate that the availability of Ni depends on both the thickness of the resin and the thickness of the diffusive gel. In both cases, the lability degree increases as the thickness increases. As the formation of successive complexes (such as Ni(NTA)2) proceeds, the availability of the metal decreases, which is quantitatively explained by reducing the formulation to a case with only one complex, but with an effective dissociation rate constant that decreases as the concentration of NTA increases. Simple analytical expressions are reported to quantify the lability degree in the different DGT configurations. These results indicate that a set of different DGT devices can characterize the availability of a cation in a natural sample with uptake processes at different spatial or time scales. Alternatively, and from a more fundamental point of view, information on speciation, mobilities and labilities of the species present in natural samples can be obtained with a set of DGT configurations.
My Website: https://www.selleckchem.com/products/ucl-tro-1938.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team