Notes
![]() ![]() Notes - notes.io |
Total suspended particulate (TSP) samples were collected in a deciduous broadleaf forest in Sapporo, Hokkaido, Japan, from January to December 2010 to understand the molecular composition and abundance of sugar compounds (SCs) in atmospheric aerosols. We analyzed the samples for anhydrosugars, primary sugars, and sugar alcohols using a gas chromatograph-mass spectrometer. The annual mean concentrations of total SCs ranged from 16.1 to 1748 ng m-3 (avg. 311 ng m-3) with maxima in spring (avg. 484 ng m-3) and minima in winter (avg. 28.2 ng m-3). Primary sugars and sugar alcohols followed the seasonal pattern of total SCs. High levels of anhydrosugars in winter (avg. 22.9 ng m-3) suggest a contribution of biomass burning from domestic heating due to lower ambient temperature. The high levels of arabitol and mannitol in spring followed by summer and autumn denote the contribution from multiple sources, i.e., growing vegetation and fungal spores in Sapporo forest. We observed an enhanced contribution of bioaerosols emitted from plant blossoms in spring and leaf decomposition in autumn. The identical seasonal trends of glucose and trehalose implied their similar sources in forest aerosols. Conversely, the highest concentration of sucrose in spring was due to the pollen emissions by blooming plants. Positive matrix factorization (PMF) analyses of the SCs suggested that organic aerosols in the deciduous forest are associated with the emissions from multiple sources, including vegetation, microbes, pollens, and wintertime biomass burning. The PMF analysis also suggested that vegetation is the primary carbon source in the forest atmosphere. The diagnostic mass ratios of levoglucosan to mannosan demonstrated the dominance of softwood burning. We noted that the meteorological parameters substantially affect the emission sources and seasonal concentrations of SCs in the deciduous forest.Syngas from gasification of waste biomass is a mixture of carbon monoxide (CO), carbon dioxide (CO2), and hydrogen (H2), which can be utilized for the synthesis of biofuels such as methane (CH4). The aim of the study research work was to demonstrate how syngas could be methanated and upgraded to natural gas quality (biomethane) in a fed-batch trickle-bed reactor system using either manure - (AD-M) or sludge-based (AD-WW) inoculum as microbial basis. The methanated syngas had a high concentration of CO2 and did not fulfil the criteria for natural gas quality biomethane. Further upgrading of syngas to biomethane could be achieved simultaneously in the same reactors by addition of exogenous H2, resulting in CH4 concentrations up to 91.0 ± 3.5% (AD-WW) and 95.3 ± 1.0% (AD-M). Microbial analysis indicated that the communities differed between AD-M and AD-WW demonstrating functional redundancy among the microbial communities of different inocula.A novel combined partial nitrification-Anammox and partial denitrification-Anammox (PnA/PdA) single sequencing batch biofilm reactor (SBBR) was established to realize efficient and advanced nitrogen removal from mature landfill leachate with low biodegradability. https://www.selleckchem.com/products/BEZ235.html Nitrogen removal rate and nitrogen removal efficiency were increased to 2.83 ± 0.06 kgN/(m3∙d) and 98.6 ± 0.2% by stepwise increase of dissolved oxygen (DO, from 0.5 to 3.5 mg/L) and continuous carbon source feeding. Comparable activities of ammonia oxidation bacteria and Anammox bacteria were realized during aerobic period. More organic carbon was redirected from complete denitrification to partial denitrification during anoxic period. The main pathway PnA jointly synergized with PdA, which contributed to 76.04% and 19.44% nitrogen removal, respectively. Nitrosomonas, Thauera, and Kuenenia dominated in floc sludge (0.78%, 5.38%, and 1.14%, respectively) and biofilm (0.34%, 5.18%, and 0.98%, respectively). Overall, this study provides new insight into the high-efficiency treatment of landfill leachate at full-scale landfill sites.This study investigated the influence of different carbon to nitrogen (C/N) ratios on the bio-removal efficiency of aquatic pollutants like calcium (Ca2+), fluoride (F-), and nitrate (NO3-N) in a quartz sand-filled biofilm reactor (QSBR) to treat the low C/N wastewater using Acinetobacter sp. H12 at pH 6.50. The simultaneous bio-removal rate of Ca2+, F-, and NO3- reached 56.31%, 96.33, and 96.95 respectively. Nitrogen gas (N2) was produced with no evidence of N2O emission. Moreover, the morphological study of strain H12 and biological precipitates through SEM revealed that strain H12 provides the nucleation sites for microbially induced calcium precipitation to remove Ca2+ and F-. Besides, XPS and XRD peak spectra implicated that Ca2+ and F- were removed as CaF2 and Ca5(PO4)3F co-precipitates. The 16S rRNA sequencing analyses revealed that H12 belongs to Acinetobacter and has stronger MICP and denitrification potential as compared with other strains under low C/N conditions.Anaerobic co-digestion of a cow manure-cotton straw mixture (CCM) has been shown to promote methanogenesis, but the recalcitrant crystal structure of organic polymers in CCM hinders its hydrolysis during anaerobic digestion (AD). Here, the efficacy of different pretreatment methods based on potassium ferrate (PF) and peroxymonosulfate (PMS) was evaluated to facilitate CCM decomposition and methanogenesis during AD. The maximum lignocellulosic removal rate (62.5%), the highest volatile fatty acids (VFAs) (7769.6 mg/L), and cumulative methane yield (109.4 mL CH4/g VS) were both achieved in PF-pretreated samples after the digestion process. The dominant bacterial populations in PF-pretreated CCM were affiliated with Sideroxydans, Herbinix, Clostridium, and Smithella, which played an important role in the hydrolysis and acidification of CCM. The enrichment of Methanosarcina and Methanobacterium and highly-effective acidogenesis might account for the highest methane yield in the PF-pretreated group.In this study, partial denitrification (PD, nitrate → nitrite) using dissolved slowly-biodegradable organic matter (DSBOM) was effectively established by introducing biosorption and hydrolytic acidification (HA) as a pretreatment for carbon capture and conversion. After 119 days of optimized operation, an efficient nitrate to nitrite transformation of 80% was achieved, with an influent nitrate level of 40 mg/L and DSBOM level of 183.8 mg/L. There was a significant shift from exogenous PD to endogenous PD, with energy supplied by HA products of captured DSBOM, i.e., acetate, saccharide and intracellular poly-hydroxyalkanoates (PHAs), jointly facilitating nitrite production. This was well explained by that genera Dechloromonas (26.7%), possibly responsible for carbon HA and nitrite production, were enriched; while abundant enzymes for glycolysis, acetate fermentation and PHAs storage, and 2.6 times more nitrate reductases than nitrite reductases were identified. These results highlight a novel carbon capture reuse and PD-based anammox strategy to cost-effectively treat nitrogen.
My Website: https://www.selleckchem.com/products/BEZ235.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team