NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Relationship in between renal syndication of leptospires throughout the serious phase and also persistent kidney malfunction within a hamster type of disease using Leptospira interrogans.
The generators have the purpose of generating two modality-invariant representations for the question-image and question-answer pairs, whereas the embedding discriminator aims to discriminate the two representations. Both the multi-modal attention module and the adversarial networks are integrated into an end-to-end unified framework to infer the answer. Experiments performed on three benchmark data sets confirm the favorable performance of ALMA compared with state-of-the-art approaches.The deployment of machine learning algorithms on resource-constrained edge devices is an important challenge from both theoretical and applied points of view. In this brief, we focus on resource-efficient randomly connected neural networks known as random vector functional link (RVFL) networks since their simple design and extremely fast training time make them very attractive for solving many applied classification tasks. We propose to represent input features via the density-based encoding known in the area of stochastic computing and use the operations of binding and bundling from the area of hyperdimensional computing for obtaining the activations of the hidden neurons. Using a collection of 121 real-world data sets from the UCI machine learning repository, we empirically show that the proposed approach demonstrates higher average accuracy than the conventional RVFL. We also demonstrate that it is possible to represent the readout matrix using only integers in a limited range with minimal loss in the accuracy. In this case, the proposed approach operates only on small n-bits integers, which results in a computationally efficient architecture. Finally, through hardware field-programmable gate array (FPGA) implementations, we show that such an approach consumes approximately 11 times less energy than that of the conventional RVFL.Federated learning (FL) is currently the most widely adopted framework for collaborative training of (deep) machine learning models under privacy constraints. Albeit its popularity, it has been observed that FL yields suboptimal results if the local clients' data distributions diverge. To address this issue, we present clustered FL (CFL), a novel federated multitask learning (FMTL) framework, which exploits geometric properties of the FL loss surface to group the client population into clusters with jointly trainable data distributions. In contrast to existing FMTL approaches, CFL does not require any modifications to the FL communication protocol to be made, is applicable to general nonconvex objectives (in particular, deep neural networks), does not require the number of clusters to be known a priori, and comes with strong mathematical guarantees on the clustering quality. CFL is flexible enough to handle client populations that vary over time and can be implemented in a privacy-preserving way. As clustering is only performed after FL has converged to a stationary point, CFL can be viewed as a postprocessing method that will always achieve greater or equal performance than conventional FL by allowing clients to arrive at more specialized models. We verify our theoretical analysis in experiments with deep convolutional and recurrent neural networks on commonly used FL data sets.Soft sensor techniques have been applied to predict the hard-to-measure quality variables based on the easy-to-measure process variables in industry scenarios. Since the products are usually produced with prearranged processing orders, the sequential dependence among different variables can be important for the process modeling. To use this property, a dual attention-based encoder-decoder is developed in this article, which presents a customized sequence-to-sequence learning for soft sensor. We reveal that different quality variables in the same process are sequentially dependent on each other and the process variables are natural time sequences. Hence, the encoder-decoder is constructed to explicitly exploit the sequential information of both the input, that is, the process variables, and the output, that is, the quality variables. The encoder and decoder modules are specified as the long short-term memory network. In addition, since different process variables and time points impose different effects on the quality variables, a dual attention mechanism is embedded into the encoder-decoder to concurrently search the quality-related process variables and time points for a fine-grained quality prediction. Comprehensive experiments are performed based on a real cigarette production process and a benchmark multiphase flow process, which illustrate the effectiveness of the proposed encoder-decoder and its sequence to sequence learning for soft sensor.Named entity recognition (NER) aims to recognize mentions of rigid designators from text belonging to predefined semantic types, such as person, location, and organization. In this article, we focus on a fundamental subtask of NER, named entity boundary detection, which aims at detecting the start and end boundaries of an entity mention in the text, without predicting its semantic type. MTX-531 The entity boundary detection is essentially a sequence labeling problem. Existing sequence labeling methods either suffer from sparse boundary tags (i.e., entities are rare and nonentities are common) or they cannot well handle the issue of variable size output vocabulary (i.e., need to retrain models with respect to different vocabularies). To address these two issues, we propose a novel entity boundary labeling model that leverages pointer networks to effectively infer boundaries depending on the input sequence. On the other hand, training models on source domains that generalize to new target domains at the test time are a challenging problem because of the performance degradation. To alleviate this issue, we propose METABDRY, a novel domain generalization approach for entity boundary detection without requiring any access to target domain information. Especially, adversarial learning is adopted to encourage domain-invariant representations. Meanwhile, metalearning is used to explicitly simulate a domain shift during training so that metaknowledge from multiple resource domains can be effectively aggregated. As such, METABDRY explicitly optimizes the capability of ``learning to generalize,'' resulting in a more general and robust model to reduce the domain discrepancy. We first conduct experiments to demonstrate the effectiveness of our novel boundary labeling model. We then extensively evaluate METABDRY on eight data sets under domain generalization settings. The experimental results show that METABDRY achieves state-of-the-art results against the recent seven baselines.
Homepage: https://www.selleckchem.com/products/mtx-531.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.