Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Due to the increase of emerging contaminants in water, how to use new treatment technology to make up for the defects of traditional wastewater treatment method has become one of the research hotspots at present. Intimate coupling of photocatalysis and biodegradation (ICPB) as a novel wastewater treatment method, which combines the advantages of biological treatment and photocatalytic reactions, has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology. The system mainly consists of photocatalytic materials, porous carriers and biofilm. The key principle of ICPB is to transform bio-recalcitrant pollutants into biodegradable products by photocatalysis on the surface of porous carriers. The biodegradable products were mineralized simultaneously through the biofilm inside the carriers. Because of the protection of the carriers, the microorganism can remain active even under the UV-light, the mechanical force of water flow or the attack of free radicals. ICPB breaks the traditional concept that photocatalytic reaction and biodegradation must be separated in different reactors, improves the purification capacity of sewage and saves the cost. This review summarizes the recent advances of ICPB photocatalysts, carriers and biofilm being applied, and focuses on the mechanisms and reactor configurations which is particularly novel. Furthermore, the possible ongoing researches on ICPB are also put forward. This review will provide a valuable insight into the design and application of ICPB in environment and energy field. Numerous genetic markers have been developed to establish microbial source tracking (MST) assays in the last decade. However, the selection of suitable markers is challenging due to a lack of understanding of fundamental factors such as sensitivity, specificity, and concentration in target/nontarget hosts, especially in East Asia. In this study, a total of 506 faecal samples comprised of human and 12 nonhuman hosts were collected from 28 cities across China and tested for marker performance characteristics. We firstly tested 40 host-associated markers based on a binary (presence/absence) criterion. Here, 15 markers (7 human-associated, 4 pig-associated, 3 ruminant-associated, and 1 poultry-associated) showed potential applicability in our study area. The selected 15 markers were then tested using qualitative and quantitative methods to characterise their performance. Overall, Bacteroidales markers presented higher sensitivity and concentrations in target samples compared to other bacterial or viral markers, bference degree of cross-reactivity from nontarget animals to genetic markers, which will facilitate tracking of multiple faecal pollution sources and planning timely remedial strategies in China. Ion exchange is widely used to treat nitrate-contaminated groundwater, but high salt usage for resin regeneration and management of waste brine residuals increase treatment costs and add environmental burdens. Development of palladium-based catalytic nitrate treatment systems for brine treatment and reuse has showed promising activity for nitrate reduction and selectivity towards the N2 over the alternative product ammonia, but this strategy overlooks the potential value of nitrogen resources. Here, we evaluated a hybrid catalytic hydrogenation/membrane distillation process for nitrogen resource recovery during treatment and reuse of nitrate-contaminated waste ion exchange brines. In the first step of the hybrid process, a Ru/C catalyst with high selectivity towards ammonia was found to be effective for nitrate hydrogenation under conditions representative of waste brines, including expected salt buildup that would occur with repeated brine reuse cycles. The apparent rate constants normalized to metal mass (0e an innovative strategy for recycling waste ion exchange brine while simultaneously recovering potentially valuable nitrogen resources when treating contaminated groundwater. Solvent properties such as surface tension, dielectric constant, and viscosity have been extensively studied over more than 150 years to understand their influence on the growth kinetics of nanostructures. Interestingly, these nanoparticles-based studies have missed the influence of solvent molecular geometry. Herein, by synthesizing ZnO nanorods on a highly conductive nitrogen incorporated graphene oxide (N-GO) substrate, we present the first study showing the influence of solvent molecular geometry on the growth mechanism of nanostructures. The solvents such as water (N-GO-ZnO-W) allow a large number of functional atoms along a, b and c-axis to coordinate in all possible directions with the metal ions of wurtzite hexagonal crystal system of ZnO and thus leads to lower aspect ratio nanorods. On the contrary, the unavailability of binding sites along a-axis for solvents such as ethanol (N-GO-ZnO-E) provides a size-limiting effect and leads to preferred growth along b and c-axis, thus generating ZnO nanorods with a higher aspect ratio. The study shows that the number of interacting atoms, carbon chain length and the solvent molecular geometry influence the aspect ratio and therefore a solvent could be used to tune the nanostructures morphology and hence the performance of devices based on them. AS1842856 ZnO is known to be photocatalytic, but with limited performances due to the strong electron-hole recombination after irradiation. The integration of ZnO nanomaterials on a conductive and high surface area carbon substrate is thus a potential alternative to obtain a significant improvement of the photocatalytic performance. Moreover, the carbon functionalization is expected to have a significant role in the adsorption/degradation mechanisms of dye, due to the difference in wettability or surface charge. In this view, ZnO photocatalytic nanoparticles have been deposited on high surface area carbon xerogel substrate (CXG), using a new and original plasma process, consisting in the degradation of a solid organometallic directly on the carbon substrate (no gaseous precursor). In addition to the ZnO nanoparticle formation, the plasma treatment allows the carbon functionalization. The ZnO/CXG composite has been tested for the degradation of Rhodamine B (RhB) in aqueous media and compared with and O2 or NH3 plasma-treated xerogels (without nanoparticles) to identify the significant role of the substrate and its modification in the RhB adsorption and degradation mechanism.
Here's my website: https://www.selleckchem.com/products/as1842856.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team