Notes
![]() ![]() Notes - notes.io |
Suppressor of cytokine signaling (SOCS) proteins are significant regulators of cellular immune responses. Therefore, the role of SOCS in bone-inflammatory disorders, including arthritis and periodontitis, has been investigated in experimental and clinical conditions. Recent evidence shows that SOCS proteins are expressed in major bone-related cells, including osteoblasts, osteoclasts, chondrocytes and synoviocytes, although their direct role in these cells is not fully described. These signaling molecules, especially SOCS1, 2 and 3, were shown to play critical roles in the control of bone resorption associated to inflammation. This review focuses on the involvement of SOCS proteins in inflammatory bone remodeling, including their direct and indirect role in the control of osteoclast hyperactivation, during arthritis and periodontitis. The description of the roles of SOCS proteins in inflammatory bone diseases highlights the pathways involved in the pathophysiology of these conditions and, thus, may contribute to the development and improvement of potential therapeutic interventions.It is nowadays well-accepted that the extracellular matrix (ECM) is not a simple reservoir for growth factors but is an organization center of their biological activity. In this review, we focus on the ability of the ECM to regulate the biological activity of BMPs. In particular, we survey the role of the ECM components, notably the glycosaminoglycans and fibrillary ECM proteins, which can be promoters or repressors of the biological activities mediated by the BMPs. learn more We examine how a process called mechano-transduction induced by the ECM can affect BMP signaling, including BMP internalization by the cells. We also focus on the spatio-temporal regulation of the BMPs, including their release from the ECM, which enables to modulate their spatial localization as well as their local concentration. We highlight how biomaterials can recapitulate some aspects of the BMPs/ECM interactions and help to answer fundamental questions to reveal previously unknown molecular mechanisms. Finally, the design of new biomaterials inspired by the ECM to better present BMPs is discussed, and their use for a more efficient bone regeneration in vivo is also highlighted.Denosumab-related osteonecrosis of the jaw (DRONJ), which mainly occurs in cancer patients receiving anti-receptor activator NF-kappaB ligand (RANKL) antibody, reduces oral health-related quality of life. However, the exact mechanisms of and definitive treatment strategies for DRONJ remain unknown. We hypothesized that cessation of denosumab heals and/or ameliorates DRONJ, since it is a protein-based antibody agent, although stopping denosumab should be avoided in clinical situations. Therefore, the aims of this study were 1) to create a healing and/or amelioration murine model of DRONJ-like lesions induced by chemotherapy/anti-RANKL antibody (mAb) combination therapy and tooth extraction; and 2) to investigate histopathology and immunopathology in the extraction sockets by comparing the murine model of DRONJ-like lesions with the amelioration/healing model of DRONJ-like lesions. Eight-week-old, female C57B/6J mice received chemotherapeutic drug (cyclophosphamide CY) and mAb combination therapy (CY/mAb) with d immunopathology of DRONJ in humans. Dynamic polarization shifting from M1 to M2 macrophages induced by mAb cessation may play an important role in wound healing, rather than angiogenesis and lymphangiogenesis, in DRONJ.Wnt/β-catenin signaling is important for skeletal development and health. Eleven heterozygous gain-of-function missense mutations within the first β-propeller of low-density lipoprotein receptor-related protein 5 (LRP5) are known to cause the autosomal dominant disorder called high bone mass (HBM). In 2019, different heterozygous LRP6 missense mutations were identified in two American families with the HBM phenotype but including absent lateral maxillary and mandibular incisors. We report a 19-year-old Argentinian man referred for "osteopetrosis" and nine years of generalized, medium-intensity bone pain and arthralgias of both knees. His jaw and nasal bridge were broad and several teeth were missing. Routine biochemical testing, including of mineral homeostasis, was normal. Urinary deoxypyridinoline and serum CTX were slightly increased. Radiographic skeletal survey showed diffusely increased radiodensity. DXA revealed substantially elevated BMD Z-scores. Digital orthopantomography confirmed agenesis of his maxillary and mandibular lateral incisors and his second left superior premolar. Cranial magnetic resonance imaging showed diffuse thickening of the calvarium and skull base, dilation of the sheath of the optic nerves containing increased fluid and associated with subtle stenosis of the optic canal, and narrow internal auditory canals. Mutation analyses identified a heterozygous indel mutation in exon 4 of LRP6 involving a single nucleotide change and 6-nucleotide deletion (c.678T>Adel679-684, p.His226Gln-del227-228ProPhe) leading to a missense change and 2-amino acid deletion that would compromise the first β-propeller of LRP6. Experience to date indicates LRP6 HBM is indistinguishable from LRP5 HBM without mutation analysis, although in LRP6 HBM absence of adult lateral incisors may prove to be a unique feature.Calcipenic rickets is prevalent in underprivileged children in developing countries. Calcipenic rickets resulting from dietary calcium (Ca) deficiency decreases bone mass and deteriorates bone microstructure in humans. The effect of dietary Ca replenishment (CaR) on rachitic bones in animal models depends on the amount, critical period and duration of replenishment, however, the extent of recovery in various bone parameters including bone quality remains unclear. We investigated the effect of CaR in rat skeleton after inducing calcipenic rickets. Female SD rats (postnatal 28 days/P28) were rendered calcipenic by feeding calcium deficient (CaD) diet (0.1% Ca) till P70 while control SD rats were fed Ca sufficient diet (0.8% Ca). At P70, calcipenic rats were switched to 0.8% Ca diet till P150 for one group and P210 for another group (endpoint). The CaD groups received 0.1% Ca diet throughout the study (P210). In the CaD groups, serum Ca and phosphate, and bone mineral density (BMD) were significantly decreased whereas serum alkaline phosphatase (ALP), iPTH and CTX-1 were increased compared to age-matched controls.
Website: https://www.selleckchem.com/products/liproxstatin-1.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team