Notes
Notes - notes.io |
This review therefore identifies actionable strategies and opportunities across foods and meals that can be considered by food manufacturers or consumers. They are (a) using alternative ingredients, (b) adding functional ingredients, and (c) changing processing methods and parameters for foods, and optimizing (a) eating behavior, (b) preloading or co-ingestion of other macronutrients, and (c) meal sequence and history. The effectiveness of a strategy would depend on consumer acceptance, compatibility of the strategy with an existing food product, and whether it is economically or technologically feasible. A combination of two or more strategies is recommended for greater effectiveness and flexibility.The potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation can be used to enhance the resistance of probiotics to unfavorable conditions. A range of oral delivery systems has been developed to increase the level of probiotics reaching the colon including embedding and coating systems. This review introduces emerging strategies for the microencapsulation of probiotics and highlights the key mechanisms of their stress-tolerance properties. Recent in vitro and in vivo models for evaluation of the efficiency of probiotic delivery systems are also reviewed. Encapsulation technologies are required to maintain the viability of probiotics during storage and within the human gut so as to increase their ability to colonize the colon. These technologies work by protecting the probiotics from harsh environmental conditions, as well as increasing their mucoadhesive properties. Typically, the probiotics are either embedded inside or coated with food-grade materials such as biopolymers or lipids. In some cases, additional components may be coencapsulated to enhance their viability such as nutrients or protective agents. The importance of having suitable in vitro and in vivo models to evaluate the efficiency of probiotic delivery systems is also emphasized.Structured lipids (SLs) refer to a new type of functional lipids obtained by chemically, enzymatically, or genetically modifying the composition and/or distribution of fatty acids in the glycerol backbone. Due to the unique physicochemical characteristics and health benefits of SLs (for example, calorie reduction, immune function improvement, and reduction in serum triacylglycerols), there is increasing interest in the research and application of novel SLs in the food industry. The chemical structures and molecular architectures of SLs define mainly their physicochemical properties and nutritional values, which are also affected by the processing conditions. In this regard, this holistic review provides coverage of the latest developments and applications of SLs in terms of synthesis strategies, physicochemical properties, health aspects, and potential food applications. Enzymatic synthesis of SLs particularly with immobilized lipases is presented with a short introduction to the genetic engineering approach. Some physical features such as solid fat content, crystallization and melting behavior, rheology and interfacial properties, as well as oxidative stability are discussed as influenced by chemical structures and processing conditions. Health-related considerations of SLs including their metabolic characteristics, biopolymer-based lipid digestion modulation, and oleogelation of liquid oils are also explored. Finally, potential food applications of SLs are shortly introduced. Major challenges and future trends in the industrial production of SLs, physicochemical properties, and digestion behavior of SLs in complex food systems, as well as further exploration of SL-based oleogels and their food application are also discussed.The increasing global population has resulted in increased demand for food. Goods quality and safe food is required for healthy living. However, food spoilage has resulted in food insecurity in different regions of the world. Spoilage of food occurs when the quality of food deteriorates from its original organoleptic properties observed at the time of processing. Food spoilage results in huge economic losses to both producers (farmers) and consumers. Factors such as storage temperature, pH, water availability, presence of spoilage microorganisms including bacteria and fungi, initial microbial load (total viable count-TVC), and processing influence the rate of food spoilage. This article reviews the spoilage microbiota and spoilage mechanisms in meat and dairy products and seafood. Understanding food spoilage mechanisms will assist in the development of robust technologies for the prevention of food spoilage and waste.Cheese is a product of ancient biotechnological practices, which has been revolutionized as a functional food product in many parts of the world. Bioactive compounds, such as peptides, polysaccharides, and fatty acids, have been identified in traditional cheese products, which demonstrate functional properties such as antihypertensive, antioxidant, immunomodulation, antidiabetic, and anticancer activities. Besides, cheese-making probiotic lactic acid bacteria (LAB) exert a positive impact on gut health, aiding in digestion, and improved nutrient absorption. Advancement in biotechnological research revealed the potential of metabolite production with prebiotics and bioactive functions in several strains of LAB, yeast, and filamentous fungi. The application of specific biocatalyst producing microbial strains enhances nutraceutical value, resulting in designer cheese products with multifarious health beneficial effects. This review summarizes the biotechnological approaches applied in designing cheese products with improved functional properties.We carried out an exhaustive review regarding human skin color variation and how much it may be related to vitamin D metabolism and other photosensitive molecules. We discuss evolutionary contexts that modulate this variability and hypotheses postulated to explain them; for example, a small amount of melanin in the skin facilitates vitamin D production, making it advantageous to have fair skin in an environment with little radiation incidence. In contrast, more melanin protects folate from degradation in an environment with a high incidence of radiation. Some Native American populations have a skin color at odds with what would be expected for the amount of radiation in the environment in which they live, a finding challenging the so-called "vitamin D-folate hypothesis." Since food is also a source of vitamin D, dietary habits should also be considered. Lorlatinib manufacturer Here we argue that a gene network approach provides tools to explain this phenomenon since it indicates potential alleles co-evolving in a compensatory way. We identified alleles of the vitamin D metabolism and pigmentation pathways segregated together, but in different proportions, in agriculturalists and hunter-gatherers.
Homepage: https://www.selleckchem.com/products/pf-06463922.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team