NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

Evaluating cortical cerebral microinfarcts in iron-sensitive MRI within cerebral tiny charter yacht disease.
We analyze the ultimate quantum limit of resolving two identical sources in a noisy environment. We prove that in the presence of noise causing false excitation, such as thermal noise, the quantum Fisher information of arbitrary quantum states for the separation of the objects, which quantifies the resolution, always converges to zero as the separation goes to zero. Noisy cases contrast with noiseless cases where the quantum Fisher information has been shown to be nonzero for a small distance in various circumstances, revealing the superresolution. In addition, we show that false excitation on an arbitrary measurement, such as dark counts, also makes the classical Fisher information of the measurement approach to zero as the separation goes to zero. Finally, a practically relevant situation resolving two identical thermal sources is quantitatively investigated by using the quantum and classical Fisher information of finite spatial mode multiplexing, showing that the amount of noise poses a limit on the resolution in a noisy system.We study the phase transitions of a fluid confined in a capillary slit made from two adjacent walls, each of which are a periodic composite of stripes of two different materials. For wide slits the capillary condensation occurs at a pressure which is described accurately by a combination of the Kelvin equation and the Cassie law for an averaged contact angle. However, for narrow slits the condensation occurs in two steps involving an intermediate bridging phase, with the corresponding pressures described by two new Kelvin equations. These are characterised by different contact angles due to interfacial pinning, with one larger and one smaller than the Cassie angle. We determine the triple point and predict two types of dispersion force induced Derjaguin-like corrections due to mesoscopic volume reduction and the singular free-energy contribution from nanodroplets and bubbles. We test these predictions using a fully microscopic density functional model which confirms their validity even for molecularly narrow slits. Analogous mesoscopic corrections are also predicted for two-dimensional systems arising from thermally induced interfacial wandering.We present a many-body theory of exciton-trion polaritons (ETPs) in doped two-dimensional semiconductor materials. ETPs are robust coherent hybrid excitations involving excitons, trions, and photons. In ETPs, the 2-body exciton states are coupled to the material ground state via exciton-photon interaction, and the 4-body trion states are coupled to the exciton states via Coulomb interaction. The trion states are not directly optically coupled to the material ground state. The energy-momentum dispersion of ETPs exhibit three bands. We calculate the energy band dispersions and the compositions of ETPs at different doping densities using Green's functions. The energy splittings between the polariton bands, as well as the spectral weights of the polariton bands, depend on the strength of the Coulomb coupling between the excitons and the trions, which in turn depends sensitively on the doping density. The doping density dependence of the ETP bands and the charged nature of the trion states could enable novel electrical and optical control of ETPs.We introduce a two-qubit engine that is powered by entanglement and local measurements. Energy is extracted from the detuned qubits coherently exchanging a single excitation. Generalizing to an N-qubit chain, we show that the low energy of the first qubit can be up-converted to an arbitrarily high energy at the last qubit by successive neighbor swap operations and local measurements. We finally model the local measurement as the entanglement of a qubit with a meter, and we identify the fuel as the energetic cost to erase the correlations between the qubits. Our findings extend measurement-powered engines to composite working substances and provide a microscopic interpretation of the fueling mechanism.We study a quantum interacting spin system subject to an external drive and coupled to a thermal bath of vibrational modes, uncorrelated for different spins, serving as a model for dynamic nuclear polarization protocols. We show that even when the many-body eigenstates of the system are ergodic, a sufficiently strong coupling to the bath may effectively localize the spins due to many-body quantum Zeno effect. Our results provide an explanation of the breakdown of the thermal mixing regime experimentally observed above 4-5 K in these protocols.Using pp collision data corresponding to an integrated luminosity of 5.4  fb^-1 collected with the LHCb detector at a center-of-mass energy of 13 TeV, the B^0→D^-D^+K^+π^- decay is studied. A new excited D_s^+ meson is observed decaying into the D^+K^+π^- final state with large statistical significance. The pole mass and width, and the spin parity of the new state are measured with an amplitude analysis to be m_R=2591±6±7  MeV, Γ_R=89±16±12  MeV, and J^P=0^-, where the first uncertainty is statistical and the second systematic. Piperlongumine ROS chemical Fit fractions for all components in the amplitude analysis are also reported. The new resonance, denoted as D_s0(2590)^+, is a strong candidate to be the D_s(2^1S_0)^+ state, the radial excitation of the pseudoscalar ground-state D_s^+ meson.The first measurement of longitudinal decorrelations of harmonic flow amplitudes v_n for n=2-4 in Xe+Xe collisions at sqrt[s_NN]=5.44  TeV is obtained using 3  μb^-1 of data with the ATLAS detector at the LHC. The decorrelation signal for v_3 and v_4 is found to be nearly independent of collision centrality and transverse momentum (p_T) requirements on final-state particles, but for v_2 a strong centrality and p_T dependence is seen. When compared with the results from Pb+Pb collisions at sqrt[s_NN]=5.02  TeV, the longitudinal decorrelation signal in midcentral Xe+Xe collisions is found to be larger for v_2, but smaller for v_3. Current hydrodynamic models reproduce the ratios of the v_n measured in Xe+Xe collisions to those in Pb+Pb collisions but fail to describe the magnitudes and trends of the ratios of longitudinal flow decorrelations between Xe+Xe and Pb+Pb. The results on the system-size dependence provide new insights and an important lever arm to separate effects of the longitudinal structure of the initial state from other early and late time effects in heavy-ion collisions.
Here's my website: https://www.selleckchem.com/products/piperlongumine.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.