Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Polyurethanes (PUs) constitute an essential class of stimuli-responsive and biodegradable material, which has significantly contributed to the advancement of polymers utilization in the biomedical field. The bio-erodible PUs construct an active corridor for facilitating drug into tumor cells, which has significantly impacted the progression of nano-micellar delivery systems. The self-assembledcolloidal PUs pose distinctive features such as enhancing the solubility of hydrophobic chemotherapeutics, rapid cellular uptake, triggered erosion and drug release, bio-stimulus sensitivity, improvement in the targeting and proficiency ofbioactive. Cationic PUs can easily be condensed with genetic material to form polyplexes and have shown excellent transfection efficiency for potential gene therapy against various cancers. Their modifiable chemistry offers a tool to impart the desired multifunctionality such as biocompatibility, sensitivity to pH, redox, temperature, enzyme, etc. and ligand conjugation for active targeting. These diverse exceptional properties make them excellent nano-carrier for a variety of bioactive, including chemotherapeutic drugs, DNA, RNA, and diagnostic moieties to the target tissue or cells. The PUs based nano-devices have certainly uncovered the path to achieve ideal systems for controlled personalized therapy. The literature discussed in this review shed light on the research innovations carried out in the last ten years for the development of multifunctional PUs for triggered delivery of bioactive to treat various cancers.Progesterone-loaded poly(lactic) acid fibrous polymeric patches were produced using electrospinning and pressurized gyration for intra-vaginal application to prevent preterm birth. The patches were intravaginally inserted into rats in the final week of their pregnancy, equivalent to the third trimester of human pregnancy. ε-poly-L-lysine Maintenance tocolysis with progesterone-loaded patches was elucidated by recording the contractile response of uterine smooth muscle to noradrenaline in pregnant rats. Both progesterone-loaded patches indicated similar results from release and thermal studies, however, patches obtained by electrospinning had smaller average diameters and more uniform dispersion compared to pressurized gyration. Patches obtained by pressurized gyration had better results in production yield and tensile strength than electrospinning; thereby pressurized gyration is better suited for scaled-up production. The patches did not affect cell attachment, viability, and proliferation on Vero cells negatively. Consequently, progesterone-loaded patches are a novel and successful treatment strategy for preventing preterm birth.The purpose of this study was to improve tabletability (tensile strength versus compaction pressure) of α-lactose monohydrate by twin screw extrusion (TSE) near its dehydration temperature but below its melting point. When extruded at 150 and 160 °C, α-lactose monohydrate converted completely to α-lactose anhydrous that was mostly crystalline and only partially amorphous; the latter was indicated by glass transition observed in DSC scans. Tabletability of the material thus obtained by TSE was superior to anhydrous lactose available commercially or produced by hot air oven drying at 160 °C. The superior tabletability was attributed to the partial conversion to amorphous lactose. When samples of anhydrous lactose powders obtained by TSE or oven drying were exposed to 25 °C/60% RH and 40 °C/75% RH, they reverted to the monohydrate with decreased tabletability. However, when anhydrous lactose powders produced by TSE were first compressed into tablets with high tensile strength and then exposed to similar stability testing conditions, there was no decrease in the tensile strength of tablets. Rather, it further increased, possibly due to the interaction of the amorphous fraction of lactose with moisture. Thus, TSE not only increased tabletability of α-lactose monohydrate, the compressed tablets remained intact and hard during shelf-life. These results demonstrate that a new modified anhydrous lactose may be produced by TSE that has better tabletability and superior physical stability than α-lactose monohydrate and the commercially available anhydrous lactose.Rifaximin (RFX) exhibit polymorphism and commercial formulation contains the α form. The polymorphic transformation of the RFX in the drug product have significant effect on the clinical outcome. The focus of present work was to understand effect of formulation component and manufacturing method, and exposure to stability condition on polymorphic stability and dissolution of RFX tablets. The RFX tablets containing 2.5, 5 and 10% glyceryl palmitostearate (GPS) were manufactured by direct-compression and wet-granulation followed by compression. Ethanol was used as a granulating solvent. The tablets were packed in pharmacy vials and exposed to 40 °C/75% RH for four weeks. The tablets were characterized for polymorphic form by X-ray powder diffraction (XRPD) and Fourier infrared spectroscopy (FTIR), assay and dissolution. Before exposure to stability condition, dissolution ranged from 78.0 ± 2.3 to 81.9 ± 3.5%, and 72.7 ± 2.0 and 75.9 ± 5.8% in directly compressed and ethanol-granulated formulations, respectivelyof RFX, which may have clinical ramification.Micellar solubilization can effectively dissolve low water-soluble compounds in aqueous environment, however, the micellar systems are not able to withstand dilution and maintain solubilization of poorly water-soluble drugs below critical micelle concentration. To overcome the drawbacks of conventional micellar solubilization, nonionic polyoxyethylated surfactants with Krafft points at or higher than body temperature were chosen to create novel micelle-based nanostructures as a delivery vehicle for poorly water-soluble compounds. A technique "thermo-spray process" was developed for the preparation of the nanostructures-containing formulation, in which the drug-containing micelle solution was first prepared and maintained at the elevated temperature above the Krafft point of the surfactant, then spray dried to solidify the obtained micelle-like nanostructure at room temperature. Lactose was used as an excipient to embed the nanostructures in the thermo-spray products. Water insoluble spherical nanoparticles with size range from 80 to 250 nm were obtained after reconstitution of the product at the temperature lower than Krafft point.
Here's my website: https://www.selleckchem.com/products/poly-l-lysine.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team