Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Stimulus-selective response modulation (SRM) of sensory evoked potentials represents a well-established non-invasive index of long-term potentiation-like (LTP-like) synaptic plasticity in the human sensory cortices. Although our understanding of the mechanisms underlying stimulus-SRM has increased over the past two decades, it remains unclear how this form of LTP-like synaptic plasticity is related to other basic learning mechanisms, such as perceptual learning. The aim of the current study was twofold; firstly, we aimed to corroborate former stimulus-SRM studies, demonstrating modulation of visual evoked potential (VEP) components following high-frequency visual stimulation. Secondly, we aimed to investigate the association between the magnitudes of LTP-like plasticity and visual perceptual learning (VPL).
42 healthy adults participated in the study. EEG data was recorded during a standard high-frequency stimulus-SRM paradigm. Amplitude values were measured from the peaks of visual components C1, P1, and rely on separate learning mechanisms implemented by different neural mechanisms.
To the extent of our knowledge, this study is the first to examine the relationship between the visual stimulus-RM phenomenon and VPL in humans. In accordance with previous studies, we demonstrated robust amplitude modulations of the C1 and N1 components of the VEP waveform. However, we did not observe any significant correlations between modulation magnitude of VEP components and VPL task performance, suggesting that these phenomena rely on separate learning mechanisms implemented by different neural mechanisms.There is a connection between the frontal negative slow wave (FNSW) and the arousal inhibition in the hedonic purchase context. To calculate the FNSW (400-800 ms), event-related potentials (ERPs) method was applied to depict the neural substrates on prudent and impulsive consumers' behaviors within various states of promotion. Promotion types include the pure price promotion and the mixed promotion (a mixture of a charitable donation and a discount). Behaviorally, consumers response more quickly in the pure price promotion condition and they express a preference for the mixed promotion. More importantly, a larger FNSW emerged in the impulsive consumers than the prudent, suggesting that the former might tend to control their eagerness to consume hedonic items. Compared with the price promotion as the worse option, the mixed promotion as the better option caused more perceptual conflict, leading to an increase in N2 amplitude. It suggests that consumers incline to reject the worse offers. These results also reveal that people primarily have to search negative promotion information by their insight and subsequently impulsive consumers inhibit the responses to the promotion information. The method of ERPs and FNSW should be helpful for marketing researchers and professionals on hedonic consumption and sales promotion.Current evidence strongly suggests that the arcuate fasciculus (AF) is critical for language, from spontaneous speech and word retrieval to repetition and comprehension abilities. However, to further pinpoint its unique and differential role in language, its anatomy needs to be explored in greater detail and its contribution to language processing beyond that of known cortical language areas must be established. selleckchem We address this in a comprehensive evaluation of the specific functional role of the AF in a well-characterized cohort of individuals with chronic aphasia (n = 33) following left hemisphere stroke. To evaluate macro- and microstructural integrity of the AF, tractography based on the constrained spherical deconvolution model was performed. The AF in the left and right hemispheres were then manually reconstructed using a modified 3-segment model (Catani et al., 2005), and a modified 2-segment model (Glasser and Rilling, 2008). The normalized volume and a measure of microstructural integrity of the long mphasis on comprehension and naming, and point to the posterior segment of this tract as being most crucial for supporting residual language abilities.In discourse comprehension, we need to draw inferences to make sense of discourse. Previous neuroimaging studies have investigated the neural correlates of causal inferences in discourse understanding. However, these findings have been divergent, and how these types of inferences are related to causal inferences in logical problem-solving remains unclear. Using the activation likelihood estimation (ALE) approach, the current meta-analysis analyzed 19 experiments on causal inferences in discourse understanding and 20 experiments on those in logical problem-solving to identify the neural correlates of these two cognitive processes and their shared and distinct neural correlates. We found that causal inferences in discourse comprehension recruited a left-lateralized frontotemporal brain system, including the left inferior frontal gyrus, the left middle temporal gyrus (MTG), and the bilateral medial prefrontal cortex (MPFC), while causal inferences in logical problem-solving engaged a nonoverlapping brain system in the frontal and parietal cortex, including the left inferior frontal gyrus, the bilateral middle frontal gyri, the dorsal MPFC, and the left inferior parietal lobule (IPL). Furthermore, the pattern similarity analyses showed that causal inferences in discourse understanding were primarily related to the terms about language processing and theory-of-mind processing. Both types of inferences were found to be related to the terms about memory and executive function. These findings suggest that causal inferences in discourse understanding recruit distinct neural bases from those in logical problem-solving and rely more on semantic knowledge and social interaction experiences.Transcranial alternating current stimulation has emerged as an effective tool for the exploration of brain oscillations. By applying a weak alternating current between electrodes placed on the scalp matched to the endogenous frequency, tACS enables the specific modulation of targeted brain oscillations This results in alterations in cognitive functions or persistent physiological changes. Most studies that utilize tACS determine a fixed stimulation frequency prior to the stimulation that is kept constant throughout the experiment. Yet it is known that brain rhythms can encounter shifts in their endogenous frequency. This could potentially move the ongoing brain oscillations into a frequency region where it is no longer affected by the stimulation, thereby decreasing or negating the effect of tACS. Such an effect of a mismatch between stimulation frequency and endogenous frequency on the outcome of stimulation has been shown before for the parietal alpha-activity. In this study, we employed an intermittent closed loop stimulation protocol, where the stimulation is divided into short epochs, between which an EEG is recorded and rapidly analyzed to determine a new stimulation frequency for the next stimulation epoch.
Read More: https://www.selleckchem.com/products/epacadostat-incb024360.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team