Notes
Notes - notes.io |
Heterogeneous reactions at the mineral-water interface are of paramount importance in controlling the transport of contaminants. Herein, antimony (Sb) adsorption and subsequent precipitation on Fe2O3 facets were explored to understand its partitioning mechanisms by multiple complementary techniques. Our extended X-ray absorption fine structure spectroscopy and density functional theory results provided a consensus on the local coordination environment of Sb(III) and Sb(V) on Fe2O3 facets. We observed that Sb adsorption and the following precipitation are associated with both Sb concentrations and Fe2O3 facets, and a change in the Sb surface-binding mode from edge-sharing to corner-sharing is preferred in precipitation. Fe2O3 facets determine Sb binding structures, resulting in a facet-dependent transformation of adsorption to precipitation. The preferred corner-sharing complexes on the 001 facet facilitated the formation of Sb2O3 and NaSb(OH)6 precipitates at a lower Sb concentration compared with other two 110 and 214 facets. In addition, the facet-specific binding configuration renders a heterogeneous epitaxial growth of Sb2O3. Our study provides a molecular understanding of facet effects on Sb adsorption and precipitation on minerals.Solar-driven water generation is a sustainable water treatment technology, helping to relieve global water scarcity issues. However, this technology faces great challenges due to the high energy consumption of water evaporation yielding low evaporation rates. Here, a covalent organic framework (COF)/graphene dual-region hydrogel, containing hydrophilic and hydrophobic regions in one material, is developed through a facile in situ growth strategy. The hydrophilic COF is covering parts of the hydrophobic graphene regions. Through accurate control of both wetting regions, the hybrid hydrogel shows effective light-harvesting, tunable wettability, optimized water content, and lowered energy demand for water vaporization. Acting as solar absorber, the dual-region hydrogel exhibits a steam generation rate as high as 3.69 kg m-2 h-1 under 1 sun irradiation (1 kW m-2), which competes well with other state-of-the-art materials. Furthermore, this hydrogel evaporator can be used to produce drinkable water from seawater and sewage, demonstrating the potential for water treatment.The antimicrobial photodynamic activity (aPDA) in fungal and bacterial strains of supramolecular adducts formed between the anionic photosensitizer (PS) Rose Bengal (RB2-) and aromatic polycations derived from (p-vinylbenzyl)triethylammonium chloride was evaluated. Stable supramolecular adducts with dissociation constants Kd ≈ 5 μM showed photosensitizing properties suitable for generating singlet oxygen (ΦΔ = 0.5 ± 0.1) with the added advantage of improving the photostability of the xanthenic dye. However, the aPDA of both free and supramolecular RB2- was highly dependent on the type of microorganism treated, indicating the importance of specific interactions between the different cell wall structures of the microbe and the PSs. Indeed, in the case of Gram-positive Staphylococcus aureus, the aPDA of molecular and supramolecular PSs was highly effective. Instead, in the case of Gram-negative Escherichia coli, only the RB2-polycation adducts showed aPDA, while RB2- alone was inefficient, but in the case of Candida tropicalis, the opposite behavior was observed. Therefore, the present results indicate the potential of supramolecular chemistry to obtain aPDA à la carte depending on the target microbe and the PS properties.The discovery of high-performance adsorbents for highly efficient separation of xenon from krypton is an important but challenging task in the chemical industry due to their similar size and inert spherical nature. Herein, we report two robust and radiation-resistant Hofmann-type MOFs, Co(pyz)[Ni(CN)4] and Co(pyz)[Pd(CN)4] (termed as ZJU-74a-Ni and ZJU-74a-Pd), featuring oppositely adjacent open metal sites and perfect pore sizes (4.1 and 3.8 Å) comparable to the kinetic diameter of xenon (4.047 Å), affording the benchmark binding affinity for polarizable Xe gas. These materials thus exhibit both record-high Xe uptake capacities (89.3 and 98.4 cm3 cm-3 at 296 K and 0.2 bar) and Xe/Kr selectivities (74.1 and 103.4) at ambient conditions, all of which are the highest among all the state-of-the-art materials reported so far. The locations of Xe molecules within ZJU-74a-Ni have been visualized by single-crystal X-ray diffraction studies, in which two oppositely adjacent metal centers combined with the right aperture size can construct a unique sandwich-like binding site to offer unprecedented and ultrastrong Ni2+-Xe-Ni2+ interactions with xenon, thus leading to the record Xe capture capacity and selectivity. The excellent separation capacity of ZJU-74a-Pd was verified by breakthrough experiments for Xe/Kr gas mixtures, providing both unprecedentedly high xenon uptake capacity (4.63 mmol cm-3) and krypton productivity (214 cm3 g-1).Overexposure to complete solar radiation (combined ultraviolet, visible, and infrared) is correlated with several harmful biological consequences including hyperpigmentation, skin cancer, eye damage, and immune suppression. With limited effective therapeutic options available for these conditions, significant efforts have been directed toward promoting preventative habits. Recently, wearable solar radiometers have emerged as practical tools for managing personal exposure to sunlight. However, designing simple and inexpensive sensors that can measure energy across multiple spectral regions without incorporating electronic components remains challenging, largely due to inherent spectral limitations of photoresponsive indicators. In this work, we report the design, fabrication, and characterization of wearable radiation sensors that leverage an unexpected feature of a natural biochrome, xanthommatin-its innate sensitivity to both ultraviolet and visible through near-infrared radiation. We found that xanthommatin-based sensors undergo a visible shift from yellow to red in the presence of complete sunlight. This color change is driven by intrinsic photoreduction of the molecule, which we investigated using computational modeling and supplemented by radiation-driven formation of complementary reducing agents. These sensors are responsive to dermatologically relevant doses of erythemally weighted radiation, as well as cumulative doses of high-energy ultraviolet radiation used for germicidal sterilization. We incorporated these miniature sensors into pressure-activated microfluidic systems to illustrate on-demand activation of a wearable and mountable form factor. When taken together, our findings encompass an important advancement toward accessible, quantitative measurements of UVC and complete solar radiation for a variety of use cases.Utilizing neutrophils (NEs) to target and deliver nanodrugs to inflammation sites has received considerable attention. NEs are involved in the formation and development of thrombosis by transforming into neutrophil extracellular traps (NETs); this indicates that NEs may be a natural thrombolytic drug delivery carrier. However, NEs lack an effective power system to overcome blood flow resistance and enhance targeting efficiency. Herein, we report the application of a urease catalysis micromotor powered NEs nanodrug delivery system to promote thrombolysis and suppress rethrombosis. The urease micromotor powered Janus NEs (UM-NEs) were prepared by immobilizing the enzyme asymmetrically onto the surface of natural NEs and then loading urokinase (UK) coupled silver (Ag) nanoparticles (Ag-UK) to obtain the UM-NEs (Ag-UK) system. Urease catalytic endogenous urea is used to generate thrust by producing ammonia and carbon dioxide, which propels NEs actively targeting the thrombus. ASN007 The UM-NEs (Ag-UK) can be activated by enriched inflammatory cytokines to release NETs at the thrombosis site, resulting in a concomitant release of Ag-UK. Ag-UK induces thrombolysis to restore vascular recanalization. This urease micromotor-driven NEs drug delivery system can significantly reduce the hemorrhagic side effects, promote thrombolysis, and inhibit rethrombosis with high bioavailability and biosafety, which can be used for the treatment of thrombotic diseases.Solid-state electrolytes that exhibit high ionic conductivities at room temperature are key materials for obtaining the next generation of safer, higher-specific-energy solid-state batteries. However, the number of currently available crystal structures for use as superionic conductors remains limited. Here, we report a lithium superionic conductor, Li2SiS3, with tetragonal crystal symmetry, which possesses a new three-dimensional framework structure consisting of isolated edge-sharing tetrahedral dimers. This species exhibits an anomalously high ionic conductivity of 2.4 mS cm-1 at 298 K, which is 3 orders of magnitude higher than the reported ionic conductivity for its orthorhombic polymorph. The framework of this conductor consists mainly of silicon, which is abundant in natural resources, and its further optimization may lead to the development of new solid-state electrolytes for large-scale applications.Plasmonic materials have been widely used in chemo/biosensing and biomedicine. However, little attention has been paid to the application of plasmonic materials in terms of the transition from molecular sensing to molecular informatization. Herein, we demonstrated that silver nanoparticles (AgNPs) prepared through facile and rapid microwave heating have multimode colorimetric sensing capabilities to different metal ions (Cr3+, Hg2+, and Ni2+), which can be further transformed into interesting and powerful molecular information technology (massively parallel molecular logic computing and molecular information protection). The prepared AgNPs can quantitatively and sensitively detect Cr3+ and Hg2+ in actual water samples. The AgNPs' multimode-guided multianalyte sensing processing was further investigated to construct a series of basic logic gates and advanced cascaded logic circuits by considering the analytes as the inputs and the colorimetric signals (like color, absorbance, wavelength shift) as the outputs. Moreover, the selective responses and molecular logic computing ability of AgNPs were also utilized to develop molecular cryptosteganography for encrypting and hiding some specific information, which proves that the molecular world and the information world are interconnected and use each other. This research not only opens the door for the transition from molecular sensing to molecular informatization but also provides an excellent opportunity for the construction of the "metaverse" of the molecular world.Herein, a novel diode laser-assisted micro-pyrolysis program (LAMP) technique is demonstrated and coupled with flowing atmospheric-pressure afterglow ambient mass spectrometry for instantaneously profiling polymers and polymer additives. Laser power modulation allows thermal separation of additives and different pyrolysis products, as shown through positive- and negative-mode high-resolution mass spectra and Kendrick mass defect plots of homopolymers, copolymers, polymer blends, and complex polymer samples. LAMP allows much faster temperature control through real-time duty cycle changes and gives significantly better spatial confinement compared to typical resistive heating pyrolysis approaches. Finally, MS imaging, with lateral and depth resolution, is demonstrated for a complex polymer pressure-sensitive adhesive tape sample.
My Website: https://www.selleckchem.com/products/asn007.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team