Notes
Notes - notes.io |
We show, for the first time in humans, that metyrapone does cross the placenta and may suppress fetal cortisol production without necessarily causing clinical signs of adrenal insufficiency.
Radiological characterization of adrenal size in primary bilateral macronodular adrenocortical hyperplasia (PBMAH) has not been previously investigated.
We hypothesized that volumetric modeling of adrenal gland size may correlate with biochemical disease severity in patients with PBMAH. Secondary analysis of patients with concurrent primary aldosteronism (PA) was performed.
A retrospective cross-sectional analysis of 44 patients with PBMAH was conducted from 2000 to 2019.
Tertiary care clinical research center.
Patients were diagnosed with PBMAH based upon clinical, genetic, radiographic and biochemical characteristics.
Clinical, biochemical, and genetic data were obtained. Computed tomography scans were used to create volumetric models by manually contouring both adrenal glands in each slice using Vitrea Core Fx v6.3 software (Vital Images, Minnetonka, Minnesota).
17-hydroxycorticosteroids (17-OHS),
genetics, and aldosterone-to-renin ratio (ARR) were retrospectively obtained. Pearson test was used for correlation analysis of biochemical data with adrenal volume.
A cohort of 44 patients with PBMAH was evaluated, with a mean age (±SD) of 53 ± 11.53. Eight patients met the diagnostic criteria for PA, of whom 6 (75%) were Black. In the Black cohort, total adrenal volumes positively correlated with midnight cortisol (R = 0.76,
= 0.028), urinary free cortisol (R = 0.70,
= 0.035), and 17-OHS (R = 0.87,
= 0.0045), with a more pronounced correlation with left adrenal volume alone. 17-OHS concentration positively correlated with total, left, and right adrenal volume in patients harboring pathogenic variants in
(R = 0.72,
= 0.018; R = 0.65,
= 0.042; and R = 0.73,
= 0.016, respectively).
Volumetric modeling of adrenal gland size may associate with biochemical severity in patients with PBMAH, with particular utility in Black patients.
Volumetric modeling of adrenal gland size may associate with biochemical severity in patients with PBMAH, with particular utility in Black patients.Coronavirus disease 2019 (COVID-19) has created an emergency of epic proportions. While a vaccine may be forthcoming, this is not guaranteed, as discussed herein. The potential problems and ominous signs include (1) lung injury that developed in animals given an experimental vaccine for the severe acute respiratory syndrome coronavirus (SARS-CoV)-1; (2) a perversion of adaptive immune responses called antibody-dependent enhancement of infection that occurs in SARS-CoV-1 and that may occur in people vaccinated for COVID-19; (3) the frequent and recurrent infections that are caused by respiratory coronaviruses; and (4) the appearance of mutations in SARS-CoV-2 proteins, which raise the specter of vaccine escape mutants. Because success is uncertain, alternatives to vaccines need to be vigorously pursued during this critical moment in the pandemic. Alternatives include (1) engineered monoclonal antibodies that do not cause antibody-dependent enhancement; (2) cocktails of antiviral drugs and inhibitors of the cellular proteins required for SARS-CoV-2 replication; (3) interferons; and (4) anticoagulants, antioxidants, and immune modulators. To organize and coordinate the systematic investigation of existing therapies and new therapies (as they emerge), a Covid-19 clinical trials network is needed to provide (1) robust funding (on a par with vaccine funding) and administration; (2) an adaptive trial design committee to prioritize interventions and review results in real time; (3) a computer interface to facilitate patient enrollment, make data available to investigators, and present findings; (4) a practice guidelines study group; and (5) a mobile corps of COVID-19 experts available for rapid deployment, to assist local health care providers and enroll patients in trials as outbreaks occur. To combat the COVID-19 pandemic and future mass contagions, the network would be a cornerstone of a comprehensive infectious diseases research program.The ability of the liver to regenerate and restore mass limits the increasing mortality rate due to life-threatening liver diseases. Successful liver regeneration is accomplished in multiple stages, of which the priming and proliferation phases are well studied. However, the regulatory pathways, specifically microRNA (miRNA)-mediated posttranscriptional regulation, which prevent uncontrolled proliferation and mediate the termination of liver regeneration, are not well understood. We identified differentially regulated miRNAs during the termination phase after 2/3 partial hepatectomy (PH) in mice, which is a well-established mouse model of liver regeneration. We further evaluated the function of differentially regulated miRNAs in primary mouse hepatocytes by using mimics and inhibitors and in vivo by using adeno-associated virus (AAV) serotype 8. A candidate miRNA target was identified by messenger RNA array in silico analyses and validated in primary mouse and human hepatocytes. selleck compound Using miRNA profiling, we discovered miR-125b-5p as a novel regulator of hepatocyte proliferation in the late phase of liver regeneration. AAV-mediated miR-125b-5p delivery in mice enhanced the endogenous regenerative capacity and resulted in improved restoration of liver mass after 2/3 PH. Further, we found that ankyrin repeat and BTB/POZ domain containing protein 1 (Abtb1) is a direct target of miR-125b-5p in primary mouse and human hepatocytes and contributes to the pro-proliferative activity of miR-125b-5p by forkhead box G1 (FOXG1) and the cyclin-dependent kinase inhibitor 1A (p21) pathway. Conclusion miR-125b-5p has an important role in regulating hepatocyte proliferation in the termination phase of liver regeneration and may serve as a potential therapeutic target in various liver diseases that often exhibit deregulated hepatocyte proliferation.Liver dysfunction, including coagulopathy, is a prominent feature of protein-energy malnutrition. To identify mechanisms underlying malnutrition-associated coagulopathy, we administered a low-protein low-fat diet to lactating dams and examined hepatic transcription and plasma coagulation parameters in young adult weanlings. Malnutrition impacted body composition to a greater extent in male versus female mice. Transcriptional profiles suggested opposing effects of nutrient-sensing nuclear receptors, namely induction of peroxisome proliferator-activated receptor α (PPARα) targets and repression of farnesoid-X-receptor (FXR) targets. Coagulopathy with decreased synthesis of fibrinogen-α (FGA) and factor 11 (F11) was observed in malnourished male animals but not female animals. In primary mouse hepatocytes, FXR agonist increased and PPARα agonist decreased Fga and F11 messenger RNA expression. Nuclear receptor DNA response elements were identified in the Fga and F11 gene regulatory regions, and opposing effects of FXR and PPARα were confirmed with luciferase assays.
My Website: https://www.selleckchem.com/products/bms-927711.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team