Notes
Notes - notes.io |
The feasibility of the combined remediation of the eutrophic water was demonstrated using a lake simulation device. Furthermore, this technique was used to restore a eutrophic pond in a park in Wuhan city. After 16 days of treatment, the water quality indices for nitrogen and phosphorus were improved from worse than Grade Ⅴ to Grade Ⅲ (GB 3838-2002, Ministry of Environmental Protection of China, 2002) and remained stable for more than 270 days, indicating that Phoslock® combined with the immobilized biofilm could quickly and effectively restore eutrophic water as well as maintain the water quality for long periods.In this work, the influence of an integrated method based on calcium nitrate, denitrifying bacteria, and zirconium-modified zeolite (CN+DB+ZZ) on the transport and transformation of nitrogen (N) and phosphorus (P) in sediments was investigated, and the risk of nitrate release from the calcium nitrate-injected sediment was evaluated. The effects of the single calcium nitrate injection (CN), calcium nitrate, and denitrifying bacteria combined treatment (CN+DB) and the combined treatment using calcium nitrate injection and zirconium-modified zeolite capping (CN+ZZ) on the mobilization of N and P in sediment were compared, and the nitrate releasing risk of these methods was also evaluated. The results indicated that although CN treatment could effectively control the P release from the sediment, this method could not effectively control the release of ammonium-nitrogen from sediment and has a high risk of releasing nitrate-nitrogen. The CN+DB combined method not only could effectively control the liberation of seediment, the reduction of redox-sensitive P in sediment, and the improvement of the phosphate and ammonium adsorption abilities of sediment by the CN+DB+ZZ combined method is critical to control the release of phosphorus and ammonium-nitrogen from sediment using this method. Results of this study reveal that the CN+DB+ZZ combined technology could be a promising method for the control of phosphorus and ammonium-nitrogen release from sediments.The Three Gorges Reservoir area (TGRA) is a critical water source protection area in China and one of the regions with rapid economic development in the Yangtze River basin. Non-point source pollution is the leading cause of the deterioration of the water environment in the TGRA; therefore, studying the non-point source pollution status in the TGRA is of great significance to the regional ecological security and sustainable development. The improved export coefficient model was used to estimate the total non-point source nitrogen and phosphorus pollution loads in the TGRA from 1990 to 2015, the spatial and temporal characteristics of the non-point source nitrogen and phosphorus pollution were analyzed, and the primary sources of pollution were determined by calculating the contribution rate of each pollution source. The results concluded that the nitrogen and phosphorus pollution loads were highest in the hinterland of the reservoir, followed by the end of the reservoir, with the lowest in the head of the reservoir, showing significant spatial heterogeneity in the TGRA. The total loads of nitrogen and phosphorus pollution increased firstly and then decreased, which reached the highest value in 2000 and the lowest value in 2015. The contribution rate of each pollution source to the nitrogen and phosphorus pollution loads, from highest to lowest, were land use, rural life, livestock, and poultry farming. selleck chemicals llc Among them, the land use type of dry land was the predominant source of non-point source nitrogen and phosphorus pollution.Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), two typical persistent organic pollutants, are the research focus due to their mutagenesis, carcinogenesis, teratogenesis, and bioaccumulation. The content distribution and residual characteristics of PAHs and PCBs were investigated in the sediments from the Sanya River. Source apportionment was further explored based on the analysis of the spatial distribution, and the ecological risk evaluation was carried out with the sediment quality criteria and standards. The results indicate that the content of ΣPAHs and ΣPCBs in the sediment range from 265.00 μg·kg-1 to 6735.00 μg·kg-1 and 1.75 μg·kg-1 to 92.75 μg·kg-1, with relatively high contents in the east and west river upstream, respectively, which had a strong correlation with the industrial structure and river movement of the study area. The composition and source apportionment demonstrate that PAHs originated mostly from the combustion of petroleum with low PAHs, and haxa-CB and hepta-CB are the predominant PCBs congeners, primarily resulting from the migration of PCBs in the capacitor. The ecological risk evaluation demonstrates that the biotoxic effect of the PAHs is not obvious, with a low ecological risk. However, several PAHs monomers exceeded the standard significantly in some sampling sites, which should be of concern due to its serious threat of exposure to organisms. The probability of a biotoxic effect of PCBs is 10%-50%, which occasionally produces a negative ecological effect.This study aimed to investigate the pollution characteristics of the volatile organic compounds in Nansi Lake and evaluate the ecological and health risks. In November 2017, water samples collected from 25 sampling points in Nansi Lake using the purge and trap technique and GC-MS detected 52 types of VOCs. The detection rate of ethylbenzene, m-/p-xylene, o-xylene, 1,2-dichlorobenzene, and naphthalene reached 100%, and cis-1,3-dichloropropene and toluene reached 96%. The detection rate of 1,2,4-trimethyl benzene was the lowest, at only 12%, the average concentration of 1,2-dichlorobenzene was the highest, reaching 3.49 μg·L-1, and 1,2,4-trimethyl benzene was only 0.02 μg·L-1. The concentration of 1,2-dichlorobenzene in Nansi Lake was generally higher than that of other VOCs. Meanwhile, the concentrations of m-/p-xylene and ethylbenzene at point NSH-24 far exceeded the other VOCs, but the median value of all VOCs did not exceed 4 μg·L-1. The spatial distribution of the VOCs concentrations in Nansi Lake presented high values in the northwest and southeast, and low in the middle.
Website: https://www.selleckchem.com/mTOR.html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team