Notes
Notes - notes.io |
Our findings suggest that Vicia faba's ability to withstand harsh environments may come from its well-developed and highly effective response to replication stress.
Survival rates for highly invasive bladder cancer (BC) patients have been very low, with a 5-year survival rate of 6%. Accurate prediction of tumor progression and survival is important for diagnosis and therapeutic decisions for BC patients. find more Our study aims to develop an autophagy-related-gene (ARG) signature that helps to predict the survival of BC patients.
RNA-seq data of 403 BC patients were retrieved from The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) database. Univariate Cox regression analysis was performed to identify overall survival (OS)-related ARGs. The Lasso Cox regression model was applied to establish an ARG signature in the TCGA training cohort (N = 203). The performance of the 11-gene ARG signature was further evaluated in a training cohort and an independent validation cohort (N = 200) using Kaplan-Meier OS curve analysis, receiver operating characteristic (ROC) analysis, as well as univariate and multivariate Cox regression analysis.
Our study identified an 11-gene ARG signature that is significantly associated with OS, including
,
,
,
,
,
,
,
,
,
, and
. The ARGs-derived high-risk bladder cancer patients exhibited significantly poor OS in both training and validation cohorts. The prognostic model showed good predictive efficacy, with the area under the ROC curve (AUCs) for 1-year, 3-year, and 5-year overall survival of 0.702 (0.695), 0.744 (0.640), and 0.794 (0.658) in the training and validation cohorts, respectively. A prognostic nomogram, which included the ARGs-derived risk factor, age and stage for eventual clinical translation, was established.
We identified a novel ARG signature for risk-stratification and robust prediction of overall survival for BC patients.
We identified a novel ARG signature for risk-stratification and robust prediction of overall survival for BC patients.
Stroke in context of type 2 diabetes (T2D) is associated with a poorer outcome than in non-diabetic conditions. We aimed at creating a new reproducible mouse model of stroke in impaired glucose tolerance conditions induced by high-fat diet.
Adult C57BL6 mice were fed for 2 months with either normal diet (ND) or high-fat diet (HFD). We used a model of Middle Cerebral Artery Occlusion (MCAO) for 90 min. Oral Glucose Tolerance Test (OGTT) and Insulin Tolerance Test (ITT) were used to assess pre-diabetic status. Brain infarct volume, hemorrhagic transformation (HT) as well as systemic and cerebral inflammatory markers were evaluated.
HFD was associated with an increased body weight and glycemia following OGTT. The HFD group presented a significant increase in brain infarct volume (38.7 (IQR 30-46.7%) vs. 28.45 (IQR 21-30%);
= 0.016) and HT (HFD 2 (IQR 1-5) vs. ND 0 (IQR 0-1);
= 0.012) and higher levels of IL-6 and MCP-1 in infarcted hemisphere compared to the ND group.
Two months of HFD in adult mice were sufficient to alter the lipid profile and the control of hyperglycemia. These metabolic perturbations were significantly associated with increased infarct volume and hemorrhagic complications.
Two months of HFD in adult mice were sufficient to alter the lipid profile and the control of hyperglycemia. These metabolic perturbations were significantly associated with increased infarct volume and hemorrhagic complications.Phytopathogenic Ascomycota are responsible for substantial economic losses each year, destroying valuable crops. The present study aims to provide new insights into phytopathogenicity in Ascomycota from a comparative genomic perspective. This has been achieved by categorizing orthologous gene groups (orthogroups) from 68 phytopathogenic and 24 non-phytopathogenic Ascomycota genomes into three classes Core, (pathogen or non-pathogen) group-specific, and genome-specific accessory orthogroups. We found that (i) ~20% orthogroups are group-specific and accessory in the 92 Ascomycota genomes, (ii) phytopathogenicity is not phylogenetically determined, (iii) group-specific orthogroups have more enriched functional terms than accessory orthogroups and this trend is particularly evident in phytopathogenic fungi, (iv) secreted proteins with signal peptides and horizontal gene transfers (HGTs) are the two functional terms that show the highest occurrence and significance in group-specific orthogroups, (v) a number of other functional terms are also identified to have higher significance and occurrence in group-specific orthogroups. Overall, our comparative genomics analysis determined positive enrichment existing between orthogroup classes and revealed a prediction of what genomic characteristics make an Ascomycete phytopathogenic. We conclude that genes shared by multiple phytopathogenic genomes are more important for phytopathogenicity than those that are unique in each genome.In this study, a stable and highly skin-permeable topical delivery system for itraconazole (ITZ) was designed to provide effective treatment against superficial mycosis. Herein, ITZ was incorporated into a solution composed of ethanol, benzyl alcohol, hydrochloric acid, Transcutol P, and cyclomethicone as a delivery vehicle, solubilizer, protonating agent, permeation enhancer, and spreading agent, respectively. At 72 h, the optimal topical ITZ formulation (ITZ-TF#11) exhibited 135% enhanced skin permeability, which led to increases in drug deposition in the stratum corneum, epidermis, and dermis of 479%, 739%, and 2024%, respectively, compared with the deposition of 1% ITZ in ethanol (control). Moreover, on day 7, ITZ-TF#11 demonstrated 2.09- and 2.30-fold enhanced nail flux and drug deposition, compared with the control. At a dose of 40 mg/kg/day, ITZ-TF#11 showed 323% greater lesion recovery, a 165% lower mean erythema severity score, and a 37% lower mean logarithm of viable fungal cells in skin in the treated area, compared with mice that received oral ITZ at the same dose. Overall, the findings imply that ITZ-TF#11 is a superior alternative to oral ITZ for treatment of superficial mycosis.
Here's my website: https://www.selleckchem.com/
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team