Notes
![]() ![]() Notes - notes.io |
To improve sustainable development, increasingly more attention has been paid to the evaluation of the resilience to waterlogging disasters. This paper proposed a projection pursuit model (PPM) improved by quantum particle swarm optimization (QPSO) for the evaluation of the resilience of subway station projects to waterlogging disasters. In view of the lack of research results related to the evaluation of the resilience of subway station projects to waterlogging disasters, 16 secondary indicators that affected the ability of subway station projects to recover from waterlogging disasters were identified from defense, recovery, and adaptability, for the first time. A PPM improved by QPSO was then proposed to effectively deal with the high-dimensional data about the resilience of subway station projects to waterlogging disasters. The QPSO was used to solve the best projection vector of the PPM, and interpolation algorithm was used to construct the mathematical model of evaluation. Finally, four station projects of Chengdu Metro Line 11 in China were selected for a case study analysis. The case study revealed that, among the secondary indicators, the emergency plan of construction order, the exercise frequency of emergency plans, and relief supplies had the greatest weights. The recovery was found to be the most important in the primary indicators. The values of the resilience of Lushan Avenue Station, Miaoeryan Station, Shenyang Road Station, and Tianfu CBD North Station to waterlogging disasters were found to be 2, 1.6571, 2.8318, and 3 respectively. This resilience ranking was consistent with the actual disaster situation in the flood season of 2019. In addition, the case study results showed that QPSO had the advantages of fewer parameter settings and a faster convergence speed as compared with PSO and the genetic algorithm.Discussion regarding hybrid manufacturing has dominated research in recent years. By synergistically integrating additive and subtractive manufacturing within a single workstation, the relative benefits of each manufacturing strategy are leveraged. The ability to add, remove feature flexibly enables remanufacturing end-of-life components into a "new" part with new features and functionalities. However, in the remanufacturing context, the process planning for hybrid additive-subtractive manufacturing is still an unsolved research topic. In general, a hybrid remanufacturing process is signified by an alternating sequence of additive and subtractive operations that alternatively add and remove materials on a used part, which results in a non-unique process planning. For determining an optimal sequence for hybrid remanufacturing, a quantitative evolution mechanism is demanded. Moreover, the constraints in process planning are required to be considered. For example, the collision avoidance between the workpiece and the material-dispensing nozzle is one of the most critical limitations that affect the alternating sequence. To fill the gap, automated feature extraction and cost-driven process planning method for hybrid remanufacturing are proposed in this paper. https://www.selleckchem.com/products/incb084550.html The feature extraction, developed under the level set framework, can extract optimal and collision-free additive-subtractive features. Then, the hybrid process planning task is formulated into an integer programming model with cost estimations. A case study is conducted, and the results confirm the correctness and effectiveness of the proposed method.Different epidemic models with one or two characteristics of multi-group, age structure and spatial diffusion have been proposed, but few models take all three into consideration. In this paper, a novel multi-group SEIR epidemic model with both age structure and spatial diffusion is constructed for the first time ever to study the transmission dynamics of infectious diseases. We first analytically study the positivity, boundedness, existence and uniqueness of solution and the existence of compact global attractor of the associated solution semiflow. Based on some assumptions for parameters, we then show that the disease-free steady state is globally asymptotically stable by utilizing appropriate Lyapunov functionals and the LaSalle's invariance principle. By means of Perron-Frobenius theorem and graph-theoretical results, the existence and global stability of endemic steady state are ensured under appropriate conditions. Finally, feasibility of main theoretical results is showed with the aid of numerical examples for model with two groups which is important from the viewpoint of applications.Mathematical modeling for cancerous disease has attracted increasing attention from the researchers around the world. Being an effective tool, it helps to describe the processes that happen to the tumour as the diverse treatment scenarios. In this paper, a density-dependent reaction-diffusion equation is applied to the most aggressive type of brain cancer, Glioblastoma multiforme. The model contains the terms responsible for the growth, migration and proliferation of the malignant tumour. The traveling wave solution used is justified by stability analysis. Numerical simulation of the model is provided and the results are compared with the experimental data obtained from the reference papers.Dynamic computer forensics is a popular area in computer forensics that combines network intrusion technology with computer forensics technology. A novel dynamic computer forensics model is proposed based on an artificial immune system. Simulating the artificial immune mechanism, the definitions of self, non-self, and immunocyte in the network transactions are given. Then, detailed evolution processes for immature detectors, mature detectors, and memory detectors are given. Real-time network risk evaluation equations are constructed, which can compute the risk of each type of network attack. Finally, computer forensics is accomplished according to the real-time network risk. The immune cells dynamically capture the real-time computer system status of the invading antigen, including CPU utilization, memory utilization, network bandwidth utilization status, etc. Theoretical analysis and comparative experimental results demonstrate that the proposed model improves the real-time efficiency and performance with low technical requirements for technicians compared with existing models.
My Website: https://www.selleckchem.com/products/incb084550.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team