Notes
![]() ![]() Notes - notes.io |
By reproducing the phase difference via optogenetic excitation of the worm body muscles, we emulated the major worm crawling behaviors in a controllable manner. Furthermore, with real-time visual feedback of the worm crawling, we realized closed-loop regulation of the movement direction and destination of single worms. This technology may facilitate scientific studies on the biophysics and neural basis of crawling locomotion of C. elegans and other nematode species.Excavators are widely used for material handling applications in unstructured environments, including mining and construction. Operating excavators in a real-world environment can be challenging due to extreme conditions-such as rock sliding, ground collapse, or excessive dust-and can result in fatalities and injuries. Here, we present an autonomous excavator system (AES) for material loading tasks. Our system can handle different environments and uses an architecture that combines perception and planning. We fuse multimodal perception sensors, including LiDAR and cameras, along with advanced image enhancement, material and texture classification, and object detection algorithms. We also present hierarchical task and motion planning algorithms that combine learning-based techniques with optimization-based methods and are tightly integrated with the perception modules and the controller modules. We have evaluated AES performance on compact and standard excavators in many complex indoor and outdoor scenarios corresponding to material loading into dump trucks, waste material handling, rock capturing, pile removal, and trenching tasks. We demonstrate that our architecture improves the efficiency and autonomously handles different scenarios. AES has been deployed for real-world operations for long periods and can operate robustly in challenging scenarios. AES achieves 24 hours per intervention, i.e., the system can continuously operate for 24 hours without any human intervention. Moreover, the amount of material handled by AES per hour is closely equivalent to an experienced human operator.Neural activity at the large-scale population level has been suggested to be consistent with a sequence of brief, quasistable spatial patterns. These "microstates" and their temporal dynamics have been linked to myriad cognitive functions and brain diseases. Most of this research has been performed using EEG, leaving many questions, such as the existence, dynamics, and behavioral relevance of microstates at the level of local field potentials (LFPs), unaddressed. Here, we adapted the standard EEG microstate analysis to triple-area LFP recordings from 192 electrodes in rats to investigate the mesoscopic dynamics of neural microstates within and across brain regions during novelty exploration. We performed simultaneous recordings from the prefrontal cortex, striatum, and ventral tegmental area in male rats during awake behavior (object novelty and exploration). We found that the LFP data can be accounted for by multiple, recurring microstates that were stable for ∼60-100 ms. The simultaneous microstate activityese microstates exhibited temporal dynamics that were correlated across regions in rhythmic patterns. NEM inhibitor ic50 We demonstrate that these microstates are linked to behavior and exhibit different properties in the frequency domain during different behavioral states. In summary, LFP microstates provide an insightful approach to studying both mesoscopic and large-scale brain activation within and across regions.The external pallidum (globus pallidus pars externa [GPe]) plays a central role for basal ganglia functions and dynamics and, consequently, has been included in most computational studies of the basal ganglia. These studies considered the GPe as a homogeneous neural population. However, experimental studies have shown that the GPe contains at least two distinct cell types (prototypical and arkypallidal cells). In this work, we provide in silico insight into how pallidal heterogeneity modulates dynamic regimes inside the GPe and how they affect the GPe response to oscillatory input. We derive a mean-field model of the GPe system from a microscopic spiking neural network of recurrently coupled prototypical and arkypallidal neurons. Using bifurcation analysis, we examine the influence of dopamine-dependent changes of intrapallidal connectivity on the GPe dynamics. We find that increased self-inhibition of prototypical cells can induce oscillations, whereas increased inhibition of prototypical cells by arkypallid synchronized oscillations and cross-frequency coupling in the basal ganglia. Because of the close links between our model and experimental findings on the structure and dynamics of prototypical and arkypallidal cells, our results can be used to guide both experimental and computational studies on the role of the GPe for basal ganglia dynamics in health and disease.The cortical subplate is critical in regulating the entry of thalamocortical sensory afferents into the cortex. These afferents reach the subplate at embryonic day (E)15.5 in the mouse, but "wait" for several days, entering the cortical plate postnatally. We report that when transcription factor LHX2 is lost in E11.5 cortical progenitors, which give rise to subplate neurons, thalamocortical afferents display premature, exuberant ingrowth into the E15.5 cortex. Embryonic mutant subplate neurons are correctly positioned below the cortical plate, but they display an altered transcriptome and immature electrophysiological properties during the waiting period. The sensory thalamus in these cortex-specific Lhx2 mutants displays atrophy and by postnatal day (P) 7, sensory innervation to the cortex is nearly eliminated leading to a loss of the somatosensory barrels. Strikingly, these phenotypes do not manifest if LHX2 is lost in postmitotic subplate neurons, and the transcriptomic dysregulation in the subplate resultl attrition and, consequently, a profound loss of sensory innervation of the mature cortex.The interplay between genetic and environmental factors is critically involved in hypertension development. The paraventricular nucleus (PVN) of the hypothalamus regulates sympathetic output during stress responses and chronic hypertension. In this study, we determined mechanisms of synaptic plasticity in the PVN in chronic stress-induced persistent hypertension in male borderline hypertensive rats (BHR), the first offspring of spontaneously hypertensive rats and normotensive Wistar-Kyoto rats. In Wistar-Kyoto rats, chronic unpredictable mild stress (CUMS) increased arterial blood pressure (ABP) and heart rate, which quickly returned to baseline after CUMS ended. In contrast, in BHR, CUMS caused persistent elevation in ABP, which lasted at least 2 weeks after CUMS ended. CUMS also increased the mRNA level of α2δ-1 and synaptic protein levels of GluN1, α2δ-1, and α2δ-1-GluN1 complexes in the PVN in BHR. Furthermore, CUMS significantly increased the frequency of miniature EPSCs and the amplitude of NMDAR currents in spinally projecting PVN neurons in BHR; these increases were normalized by blocking NMDARs with AP5, inhibiting α2δ-1 with gabapentin, or disrupting the α2δ-1-NMDAR interaction with α2δ-1Tat peptide.
Website: https://www.selleckchem.com/products/n-ethylmaleimide-nem.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team