Notes
Notes - notes.io |
Niemann-Pick type C (NP-C) disease is a neurovisceral atypical lysosomal lipid storage disorder with a poor prognosis. We present the 5-year neuropsychological follow-up of a patient with juvenile onset NP-C, spanning the pre-diagnostic stage to the period after treatment with miglustat (Actelion Pharmaceuticals Inc., CA, US). In the initial stages of the disease, the patient presented behavioral dysexecutive symptoms resembling those frequently observed in adult-onset forms and frontotemporal dementia, which frequently makes early diagnosis difficult in children. After 4 years of treatment, the impaired cognitive function and behavioral dysexecutive syndrome had been completely reversed. The variability of NP-C disease makes early diagnosis challenging. Evaluations of long-term neuropsychological development can help diagnose this neurodegenerative disease and document its progression.BACKGROUND Ublituximab, a novel monoclonal antibody (mAb) targeting a unique epitope on the CD20 antigen, is glycoengineered for enhanced B-cell targeting through antibody-dependent cellular cytotoxicity (ADCC). Greater ADCC may allow lower doses and shorter infusion times versus other anti-CD20 mAbs. OBJECTIVE The objective was to determine optimal dose, infusion time, and activity of ublituximab in relapsing multiple sclerosis. METHODS This is a phase 2, placebo-controlled study. Patients received three ublituximab infusions (150 mg over 1-4 hours on day 1 and 450-600 mg over 1-3 hours on day 15 and week 24) in six dosing cohorts. The primary endpoint was B-cell depletion. RESULTS In all cohorts (N = 48), median B-cell depletion was >99% by week 4, maintained at weeks 24 and 48. Most common adverse events (AEs) were infusion-related reactions (all grade 1-2), with no apparent increased incidence at shorter infusion times. There were no AE-related discontinuations. At weeks 24 and 48, no T1 gadolinium-enhancing lesions (p = 0.003) and a 10.6% decrease in T2 lesion volume (p = 0.002) were detected. The annualized relapse rate was 0.07; 93% remained relapse free on study. Overall, 74% of patients had no evidence of disease activity (NEDA). CONCLUSION Ublituximab was safely infused as rapid as 1 hour, producing robust B-cell depletion and profound reductions in magnetic resonance imaging (MRI) activity and relapses.Micro-nanoparticles can enter the root tissue of plant cells along with the multiple lanes, and then accumulate in the tissue. But the plant physiological effect is still less studied. In this study, rice seedlings at germination stage were treated with 100 µM NaBiF4 and BiF3. We found that exogenous application of NaBiF4 treatment inhibited the elongation of rice roots and promoted the generation of adventitious roots, but treated BiF3 did not mediate obvious phenotype. Further analysis of the peroxidase activity in related tissues showed that NaBiF4 induced the activity of SOD and CAT decreased, and POD increased, while BiF3 only induced the activity of SOD to reduced, but the activity of CAT and POD were no changed. Further analysis of the sodium element and potassium element concentration in tissues showed that only the NaBiF4 treatment reduced content of potassium, but not sodium. Finally, stress-related genes OsMT1, OsMT2, OsOVP1, OsNIP2;1, and OsMT2b were analyzed by Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR). These results showed that NaBiF4 induced the expression of OsMT2, OsOVP1, OsNIP2;1 decreased, and OsMT2b increased. However, BiF3 only induced expression of OsMT1 increased. These results provide a physiological basis for further analysis of the effects of sodium salt-nanoparticles in crop plants.Acoustic liquid handlers deliver small volumes (nL-µL) of multiple fluid types with accuracy and dynamic viscosity profiling. They are widely used in the pharmaceutical industry with applications extending from high-throughput screening in compound management to gene expression sequencing, genomic and epigenetic assays, and cell-based assays. The capability of the Echo to transfer small volumes of multiple types of fluids could benefit bioanalysis assays by minimization of sample volume and by simplifying dilution procedures by direct dilution. In this study, we evaluated the Labcyte Echo 525 liquid handler for its ability to deliver small volumes of sample preparations in biological matrix (plasma and serum) and to assess the feasibility of integration of the Echo with three types of bioanalytical assay platforms microplate enzyme-linked immunosorbent assay, Gyrolab immunoassay, and liquid chromatography with tandem mass spectrometry. The results demonstrated acceptable consistency of dispensed plasma samples from multiple lots and species by the Echo. Equivalent assay performance demonstrated between the Echo and manual liquid procedures indicated great potential for the integration of the Echo with the bioanalytical assay, which allows the successful implementation of microsampling strategies in drug discovery and development.Quickly and easily producing uniform populations of microsphere-based 3D cell cultures using droplet-based templating methods has the potential to enable widespread use of such platforms in drug discovery or cancer research. Here, we advance the design of centrifuge-based droplet generation devices, describe the use of this platform for droplet generation with controlled cell occupancy, and demonstrate weeklong culture duration. Using simple-to-construct devices and easily implemented protocols, the initial concentration of encapsulated cells is adjustable up to hundreds of cells per microsphere. This work demonstrates the first instance of using centrifugal droplet-generating devices to produce large numbers of cell-encapsulating microspheres. Applications of this versatile methodology include the rapid formation of templated 3D cell culture populations suitable for suspension culture or large batch bioreactor studies that require uniform populations.This paper presents a novel microflow-based concept for studying the permeability of in vitro cell models or ex vivo tissues. Using the proposed concept, we demonstrate how to maintain physiologically relevant test conditions and produce highly reproducible permeability values for a range (31) of drug compounds. check details The apparent permeability coefficients (Papp) showed excellent correlation (0.89) with the values from experiments performed with a conventional Ussing chamber. Additionally, the microflow-based concept produces notably more concentrated samples than the conventional Ussing chamber-based approach, despite the fact that more than 10 times smaller quantities of test compounds and biological membranes are needed in the microflow-based concept.
Here's my website: https://www.selleckchem.com/products/Calcitriol-(Rocaltrol).html
|
Notes.io is a web-based application for taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000 notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 12 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team