Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
In addition, deletion of Aurkb and Aurkc leads to an accumulation of metaphase spermatocytes, chromosome missegregation and aberrant cytokinesis. Collectively, our data demonstrate that AURKB and AURKC functionally compensate for one another ensuring successful mammalian spermatogenesis.This article has an associated First Person interview with the first author of the paper.Cdc48 (known as VCP in mammals) is a highly conserved ATPase chaperone that plays an essential role in the assembly and disassembly of protein-DNA complexes and in degradation of misfolded proteins. We find that in Saccharomyces cerevisiae budding yeast, Cdc48 accumulates during cellular stress at intranuclear protein quality control sites (INQ). We show that Cdc48 function is required to suppress INQ formation under non-stress conditions and to promote recovery following genotoxic stress. Cdc48 physically associates with the INQ substrate and splicing factor Hsh155, and regulates its assembly with partner proteins. Accordingly, cdc48 mutants have defects in splicing and show spontaneous distribution of Hsh155 to INQ aggregates, where it is stabilized. Overall, this study shows that Cdc48 regulates deposition of proteins at INQ and suggests a previously unknown role for Cdc48 in the regulation or stabilization of splicing subcomplexes.This article has an associated First Person interview with the first author of the paper.In most eukaryotes, the meiotic chromosomal bouquet (comprising clustered chromosome ends) provides an ordered chromosome arrangement that facilitates pairing and recombination between homologous chromosomes. In the protist Tetrahymena thermophila, the meiotic prophase nucleus stretches enormously, and chromosomes assume a bouquet-like arrangement in which telomeres and centromeres are attached to opposite poles of the nucleus. We have identified and characterized three meiosis-specific genes [meiotic nuclear elongation 1-3 (MELG1-3)] that control nuclear elongation, and centromere and telomere clustering. The Melg proteins interact with cytoskeletal and telomere-associated proteins, and probably repurpose them for reorganizing the meiotic prophase nucleus. A lack of sequence similarity between the Tetrahymena proteins responsible for telomere clustering and bouquet proteins of other organisms suggests that the Tetrahymena bouquet is analogous, rather than homologous, to the conserved eukaryotic bouquet. We also report that centromere clustering is more important than telomere clustering for homologous pairing. Therefore, we speculate that centromere clustering may have been the primordial mechanism for chromosome pairing in early eukaryotes.Matrix resorption is essential to the clearance of the extracellular matrix (ECM) after normal wound healing. A disruption in these processes constitutes a main component of fibrotic diseases, characterized by excess deposition and diminished clearance of fibrillar ECM proteins, such as collagen type I. The mechanisms and stimuli regulating ECM resorption in the lung remain poorly understood. Recently, agonism of dopamine receptor D1 (DRD1), which is predominantly expressed on fibroblasts in the lung, has been shown to accelerate tissue repair and clearance of ECM following bleomycin injury in mice. Therefore, we investigated whether DRD1 receptor signaling promotes the degradation of collagen type I by lung fibroblasts. For cultured fibroblasts, we found that DRD1 agonism enhances extracellular cleavage, internalization and lysosomal degradation of collagen I mediated by cathepsin K, which results in reduced stiffness of cell-derived matrices, as measured by atomic force microscopy. In vivo agonism of DRD1 similarly enhanced fibrillar collagen degradation by fibroblasts, as assessed by tissue labeling with a collagen-hybridizing peptide. Together, these results implicate DRD1 agonism in fibroblast-mediated collagen clearance, suggesting an important role for this mechanism in fibrosis resolution.This article has an associated First Person interview with the first author of the paper.Studies in visual, auditory, and somatosensory cortices have revealed that different cell types as well as neurons located in different laminae display distinct stimulus response profiles. The extent to which these layer and cell type-specific distinctions generalize to gustatory cortex (GC) remains unknown. In this study, we performed extracellular recordings in adult female mice to monitor the activity of putative pyramidal and inhibitory neurons located in deep and superficial layers of GC. Awake, head-restrained mice were trained to lick different tastants (sucrose, salt, citric acid, quinine, and water) from a lick spout. We found that deep layer neurons show higher baseline firing rates (FRs) in GC with deep-layer inhibitory neurons displaying highest FRs at baseline and following the stimulus. GC's activity shows robust modulations before animals' contact with tastants, and this phenomenon is most prevalent in deep-layer inhibitory neurons. Furthermore, we show that licking activity strongly shapes theroperties of gustatory cortex (GC) neurons change as a function of their laminar position and cell type remains uninvestigated. Here, we show that there are several notable differences in baseline, prestimulus, and stimulus-evoked response profiles of pyramidal and inhibitory neurons belonging to deep and superficial layers of GC.The ability to predict the timing of forthcoming events, known as temporal expectation, has a strong impact on human information processing. Although there is growing consensus that temporal expectations enhance the speed and accuracy of perceptual decisions, it remains unclear whether they affect the decision process itself, or non-decisional (sensory/motor) processes. Here, healthy human participants (N = 21; 18 female) used predictive auditory cues to anticipate the timing of low-contrast visual stimuli they were required to detect. #link# Modeling of the behavioral data using a prominent sequential sampling model indicated that temporal expectations speeded up non-decisional processes but had no effect on decision formation. Electrophysiological recordings confirmed and extended this result temporal expectations hastened the onset of a neural signature of decision formation but had no effect on its build-up rate. Anticipatory α band power was modulated by temporal expectation and co-varied with intrinsic trial-bout affecting evidence quality.Itch can be induced by activation of small-diameter DRG neurons, which express abundant intracellular fibroblast growth factor 13 (FGF13). Although FGF13 is revealed to be essential for heat nociception, its role in mediating itch remains to be investigated. Here, we reported that loss of FGF13 in mouse DRG neurons impaired the histamine-induced scratching behavior. Calcium imaging showed that the percentage of histamine-responsive DRG neurons was largely decreased in FGF13-deficient mice; and consistently, electrophysiological recording exhibited that histamine failed to evoke action potential firing in most DRG neurons from these mice. Given that the reduced histamine-evoked neuronal response was caused by knockdown of FGF13 but not by FGF13A deficiency, FGF13B was supposed to mediate this process. Furthermore, overexpression of histamine Type 1 receptor H1R, but not H2R, H3R, nor H4R, increased the percentage of histamine-responsive DRG neurons, and the scratching behavior in FGF13-deficient mice was highlr the neuronal excitation and scratching behavior induced by histamine. We further provide the evidence that the histamine-evoked neuronal response is mainly mediated by histamine Type 1 receptor H1R, and is largely attenuated in FGF13-deficent mice. Importantly, we identify that histamine enhances the FGF13/NaV1.7 interaction, and disruption of this interaction reduces histamine-evoked neuronal excitation and highly impairs histamine-induced scratching behavior. Additionally, we also find that FGF13 is involved in 5-hydroxytryptamine-induced scratching behavior and hapten 1-fluoro-2,4-dinitrobenzene-induced chronic itch.Oral squamous cell carcinoma (OSCC) is one of the most painful cancers, which interferes with orofacial function including talking and eating. We report that legumain (Lgmn) cleaves protease-activated receptor-2 (PAR2) in the acidic OSCC microenvironment to cause pain. Lgmn is a cysteine protease of late endosomes and lysosomes that can be secreted; it exhibits maximal activity in acidic environments. The role of Lgmn in PAR2-dependent cancer pain is unknown. We studied Lgmn activation in human oral cancers and oral cancer mouse models. Lgmn was activated in OSCC patient tumors, compared with matched normal oral tissue. After intraplantar, facial or lingual injection, Lgmn evoked nociception in wild-type (WT) female mice but not in female mice lacking PAR2 in NaV1.8-positive neurons (Par2Nav1.8), nor in female mice treated with a Lgmn inhibitor, LI-1. Inoculation of an OSCC cell line caused mechanical and thermal hyperalgesia that was reversed by LI-1. Par2Nav1.8 and Lgmn deletion attenuated mechanical allodyred with matched normal oral tissue. link2 Lgmn evokes pain-like behavior through PAR2 Exposure of pain-sensing neurons to Lgmn decreased the current required to generate an action potential through PAR2 Inhibitors of adenylyl cyclase and protein kinase A (PKA) prevented the effects of Lgmn. Lgmn activated PAR2 to induce calcium mobilization, cAMP formation, and activation of protein kinase D (PKD) and PKA, but not β-arrestin recruitment or PAR2 endocytosis. Thus, Selleck MMRi62 is a biased agonist of PAR2 that evokes cancer pain.Dopamine is a wake-promoting neuromodulator in mammals and fruit flies. In Drosophila melanogaster, the network of clock neurons that drives sleep/activity cycles comprises both wake-promoting and sleep-promoting cell types. The large ventrolateral neurons (l-LNvs) and small ventrolateral neurons (s-LNvs) have been identified as wake-promoting neurons within the clock neuron network. The l-LNvs are innervated by dopaminergic neurons, and earlier work proposed that dopamine signaling raises cAMP levels in the l-LNvs and thus induces excitatory electrical activity (action potential firing), which results in wakefulness and inhibits sleep. Here, we test this hypothesis by combining cAMP imaging and patch-clamp recordings in isolated brains. We find that dopamine application indeed increases cAMP levels and depolarizes the l-LNvs, but, surprisingly, it does not result in increased firing rates. Downregulation of the excitatory D1-like dopamine receptor (Dop1R1) in the l-LNvs and s-LNvs, but not of Dop1R2, abolishes in the regulation of sleep by clock-containing neurons. Dopamine inhibits neurons in a central brain sleep center to promote sleep and excites wake-promoting circadian clock neurons. It is therefore predicted to promote wakefulness through both of these networks. Nevertheless, our results reveal that dopamine acting on wake-promoting clock neurons promotes sleep, revealing a previously unappreciated complexity in the dopaminergic control of sleep.AXL, a TAM (TYRO3, AXL, and MERTK) family receptor tyrosine kinase, is increasingly being recognized as a key determinant of resistance to targeted therapies, as well as chemotherapy and radiation in non-small cell lung cancer (NSCLC) and other cancers. We further show here that high levels of AXL and epithelial-to-mesenchymal transition were frequently expressed in subsets of both treatment-naïve and treatment-relapsed NSCLC. Previously, we and others have demonstrated a role for AXL in mediating DNA damage response (DDR), as well as resistance to inhibition of WEE1, a replication stress response kinase. Here, we show that BGB324 (bemcentinib), a selective small-molecule AXL inhibitor, caused DNA damage and induced replication stress, indicated by ATR/CHK1 phosphorylation, more significantly in TP53-deficient NSCLC cell lines. link3 Similar effects were also observed in large-cell neuroendocrine carcinoma (LCNEC) cell lines. High AXL protein levels were also associated with resistance to ATR inhibition. Combined inhibition of AXL and ATR significantly decreased cell proliferation of NSCLC and LCNEC cell lines.
Homepage: https://www.selleckchem.com/products/mmri62.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team