Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
Despite significant advances in the design of implants with antibacterial properties, the problem of postoperative infections still remains. Different nanomodifications of the implant surface have been designed to reduce bacterial contamination. Here, we review bactericidal, fungicidal, and immunomodulating properties of compounds used for the implant surface nanomodifications, such as silver, boron nitride nanomaterials, nanofibers, and nanogalvanic materials.This review discusses main directions and results of the studies on antibiotics produced by bacteria living in the marine environment. In recent years many obligate marine species and strains were studied, diverse metabolites were isolated, and their chemical structures were elucidated. Among them here were natural compounds toxic against tumor cells, pathogenic bacteria, viruses, and malaria plasmodial species; these compounds often had no analogues among the natural products of terrestrial origin. Some isolated compounds form a basis of active ingredients in medicinal preparations used in clinic practice, while others are under different stages of preclinical or clinical studies. Much attention has been paid in recent years to producers of marine-derived antibiotics isolated from the deep-sea habitats, from the surface of marine invertebrates and algae, as well as from symbiotic microorganisms.The increasing prevalence of bacterial pathogens with multiple antibiotic resistance requires development of new approaches to control infections. Phage therapy is one of the most promising approaches. In recent years, research organizations and a number of pharmaceutical companies have intensified investigations aimed at developing bacteriophage-based therapeutics. In the United States and European countries, special centers have been established that experimentally apply phage therapy to treat patients who do not respond to antibiotic therapy. This review describes the features of bacteriophages as therapeutic tools, critically discusses the results of clinical trials of bacteriophage preparations, and assesses the prospects for using phage therapy to treat certain types of infectious diseases.Methylation of nucleotides in rRNA is one of the basic mechanisms of bacterial resistance to protein synthesis inhibitors. The genes for corresponding methyltransferases have been found in producer strains and clinical isolates of pathogenic bacteria. In some cases, rRNA methylation by housekeeping enzymes is, on the contrary, required for the action of antibiotics. The effects of rRNA modifications associated with antibiotic efficacy may be cooperative or mutually exclusive. Evolutionary relationships between the systems of rRNA modification by housekeeping enzymes and antibiotic resistance-related methyltransferases are of particular interest. In this review, we discuss the above topics in detail.The discovery of antibiotics was one of the fundamental stages in the development of humanity, leading to a dramatic increase in the life expectancy of millions of people all over the world. The uncontrolled use of antibiotics resulted in the selection of resistant strains of bacteria, limiting the effectiveness of antimicrobial therapy nowadays. Antimicrobial peptides (AMPs) were considered promising candidates for next-generation antibiotics for a long time. However, the practical application of AMPs is restricted by their low therapeutic indices, impaired pharmacokinetics, and pharmacodynamics, which is predetermined by their peptide structure. Nevertheless, the DNA-encoded nature of AMPs enables creating broad repertoires of artificial biodiversity of antibiotics, making them versatile templates for the directed evolution of antibiotic activity. Lantibiotics are a unique class of AMPs with an expanded chemical space. A variety of post-translational modifications, mechanisms of action on bacterial membranes, and DNA-encoded nature make them a convenient molecular template for creating highly representative libraries of antimicrobial compounds. Isolation of new drug candidates from this synthetic biodiversity is extremely attractive but requires high-throughput screening of antibiotic activity. The combination of synthetic biology and ultrahigh-throughput microfluidics allows implementing the concept of directed evolution of lantibiotics for accelerated creation of new promising drug candidates.The global problem of emerging resistance of microorganisms to antibiotics makes the search for new natural substances with antibacterial properties relevant. Such substances include peptidoglycan recognition proteins (PGLYRP), which are the components of the innate immunity of many organisms, including humans. These proteins have a unique mechanism of action that allows them to evade the resistance of bacteria to them, as well as to be active against both Gram-positive and Gram-negative bacteria. However, the use of antimicrobial recombinant proteins is not always advisable due to the complexity of local delivery of the proteins and their stability; in this regard it seems appropriate to activate the components of the innate immunity. The aim of this study was to increase the expression level of native peptidoglycan recognition protein genes in HeLa cells using genome-editing technology with synergistic activation mediators (CRISPR/Cas9-SAM) and evaluate antichlamydial effect of PGLYRP. We demonstrated activation of the chlamydial two-component gene system (ctcB-ctcC), which played a key role in the mechanism of action of the peptidoglycan recognition proteins. We generated the HeLa cell line transduced with lentiviruses encoding CRISPR/Cas9-SAM activation system with increased PGLYRP gene expression. It was shown that activation of the own peptidoglycan recognition proteins gene expression in the cell line caused inhibition of the chlamydial infection development. The proposed approach makes it possible to use the capabilities of innate immunity to combat infectious diseases caused by Gram-positive and Gram-negative bacteria.β-Lactam antibiotics account for about 60% of all produced antibiotics. Due to a high activity and minimal side effects, they are the most commonly used class of antibacterial drugs for the treatment of various infectious diseases of humans and animals, including severe hospital infections. However, the emergence of bacteria resistant to β-lactams has led to the clinical inefficiency of these antibiotics, and as a result, their use in medicine has been limited. The search for new effective ways for overcoming the resistance to β-lactam antibiotics is an essential task. The major mechanism of bacterial resistance is the synthesis of β-lactamases (BLs) that break the antibiotic β-lactam ring. Here, we review specific inhibitors of serine β-lactamases and metallo-β-lactamases and discuss approaches for creating new inhibitors that would prolong the "life" of β-lactams.This issue of the Biochemistry (Moscow) journal presents reviews and experimental articles on the new strategies for solving the problem of antibiotic resistance and on the search for novel antimicrobial preparations using the methods of molecular biology, genetics, and nanotechnology. A wide variety of scientific approaches and successful (as a rule) research results give hope for overcoming microbial antibiotic resistance in the fight against infectious diseases.Pituitary glands from 141 feline autopsy cases were reviewed histologically. Adenoma and hyperplasia were the most common lesions at 13 cases each. Pituitary adenoma was more likely than hyperplasia to be associated with clinical evidence of endocrinopathy or an intracranial mass (P less then .001). A histochemical and immunohistochemical panel was applied to 44 autopsy- or hypophysectomy-derived pituitary adenomas in 43 cats from 2 diagnostic laboratories. Adenomas were differentiated from hyperplasia by the presence of disrupted reticulin fibers. One cat had a double (somatotroph and melanotroph) adenoma. Twenty somatotroph adenomas consisted of periodic acid-Schiff (PAS)-negative acidophils that expressed growth hormone; 16/20 had hypersomatotropism; 17/20 had diabetes mellitus. Eleven melanotroph adenomas consisted of PAS-positive basophils or chromophobes that expressed melanocyte-stimulating and adrenocorticotrophic hormones; 5/11 had hypercortisolism; 6/11 had diabetes mellitus. Eleven gonadotroph adenomas consisted of PAS-negative chromophobes that expressed follicle-stimulating and/or luteinizing hormones. Two thyrotroph adenomas consisted of PAS-negative basophils or chromophobes that expressed thyroid-stimulating hormone. Pituitary-dependent disease was not recognized in cats with gonadotroph or thyrotroph adenomas. The Ki-67 proliferation index in hypophysectomy specimens was lower in somatotroph than in melanotroph adenomas. Fourteen cats with hypophysectomy-treated somatotroph or melanotroph adenoma had an 899-day median survival time versus 173 days in 17 nonsurgical cases. After adjusting for age, adenoma size and type, hypophysectomized cats had an overall better survival time than nonsurgical cases (P = .029). The study results underscore the value of hypophysectomy and trophic hormone immunohistochemistry in the treatment and classification of feline pituitary adenomas.A highly sensitive and selective optical chemosensor (Arg-Rhoen) for determination of Au3+ was prepared by covalent immobilization of rhodamine ethylenediamine on agarose gel. Spectrophotometric studies of complex formation, chemical structures and purity of the hydrogel sensor were carried out using TGA, NMR, TEM, and IR. The complexation study results indicated that this probe can selectively detect Au3+ via a metal ion chelation-induced ring-opening reaction, and then caused a remarkable colour change from colourless to pink and a strong fluorescence enhancement. Theoretical DFT calculation results suggested that the hydrogel sensor Arg-Rhoen formed stable complexes with Au3+ through a large number of cation-dipole interactions. Reusability has been established by repeatedly dipping and rinsing the hydrogel in aqueous Au3+ and EDTA in basic solutions. We believe that this approach may provide an easily measurable and inherently sensitive method for Au3+ detection in environmental and biological applications.Merkel cell carcinoma (MCC) is an aggressive cutaneous neuroendocrine tumor, and most human MCC cases are infected by Merkel cell polyomavirus (MCPyV). However, the underlying pathogeneses of MCC in animals remain unclear. In the present study, newly established cell lines from feline and canine MCC, a MCPyV-positive human MCC cell line, and MCC tissues from 25 cats and 1 dog were examined and compared pathologically. Feline and canine MCCs were composed of tumor cells arranged in trabeculae and solid packets. BAY 2402234 Twenty out of 25 feline MCC cases (80%) had other proliferative cutaneous lesions, such as carcinoma in situ and squamous cell carcinoma. Among the 25 feline MCC cases, tumor cells were immunopositive for cytokeratins (CKs), including CK5/6 (4/25 cases, 16%), CK7 (5, 20%), CK18 (25, 100%), CK19 (20, 80%), and CK20 (20, 80%). The tumor cells of feline MCC were also immunopositive for synaptophysin (24/25, 96%) and CD56 (22/25, 88%). The tumor cells of canine MCC were immunopositive for CK18, CK19, CK20, and synaptophysin.
My Website: https://www.selleckchem.com/products/bay-2402234.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team