NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

The effect involving bronchi parenchyma attenuation upon nodule volumetry in lung cancer screening.
As a key cell cycle regulator, polo-like kinase 1 (Plk1) has been recognized as a crucial factor involved in the progression of pancreatic cancer (PC). However, its regulatory mechanism is poorly understood. Here, we present evidence that Plk1 is a novel substrate of vaccinia-related kinase 2 (VRK2), a serine-threonine kinase that is highly expressed and predicts poor prognosis in PC. VRK2 phosphorylates Plk1 at threonine 210 and protects it from ubiquitin-dependent proteasomal degradation. We showed that mechanistically complement factor H-related protein (CFHR), as a major E3 ligase, promotes Plk1 degradation by ubiquitinating it at lysine 209. Phosphorylation of Plk1 at threonine 210 by VRK2 interferes with the interaction of Chfr with Plk1 and antagonizes Plk1 ubiquitination, thereby stabilizing the Plk1 protein. Taken together, our data reveal a mechanism of Plk1 overexpression in PC and provide evidence for targeting VRK2 as a potential therapeutic strategy.Oxaliplatin (oxa) is widely used in the treatment of colorectal cancer (CRC), but the development of oxaliplatin resistance is a major obstacle to the therapeutic efficacy in patients. MicroRNAs (miRNAs), endogenous noncoding RNAs measuring between 22 and 24 nucleotides, have been shown to be involved in the development of CRC drug resistance. However, the mechanism by which differentially expressed miRNAs induce chemotherapy resistance in CRC has not been fully elucidated to date. Here, we showed the differentially expressed miRNAs in oxaliplatin-sensitive and oxaliplatin-resistant CRC cells through miRNA microarray technology and found that miR-135b-5p was significantly increased in oxaliplatin-resistant cells. And miR-135b-5p was increased in the serum of colorectal cancer patients. More importantly, the miR-135b-5p level in the serum of oxaliplatin-resistant patients was further increased compared to that of oxaliplatin-sensitive patients. Recent studies have shown that protective autophagy is an important mechanism that promotes drug resistance in tumors. The potential role of miR-135b-5p in inducing protective autophagy and promoting oxaliplatin resistance was evaluated in two stable oxaliplatin-resistant CRC cell lines and their parental cells. We further identified MUL1 as a direct downstream target of miR-135b-5p and showed that MUL1 could degrade the key molecule of autophagy, ULK1, through ubiquitination. Mouse xenograft models were adopted to evaluate the correlation between miR-135b-5p and oxaliplatin-induced autophagy in vivo. Furthermore, we also investigated the regulatory factors for the upregulation of miR-135b-5p in CRC cells under oxaliplatin chemotoxicity. These results indicated that miR-135b-5p upregulation in colorectal cancer could induce protective autophagy through the MUL1/ULK1 signaling pathway and promote oxaliplatin resistance. Targeting miR-135b-5p may provide a new treatment strategy for reversing oxaliplatin resistance in CRC.Cancer-associated fibroblasts (CAFs) constitute a prominent component of the tumor microenvironment and play critical roles in cancer progression and drug resistance. Although recent studies indicate CAFs may consist of several CAF subtypes, the breadth of CAF heterogeneity and functional roles of CAF subtypes in cancer progression remain unclear. Epigenetic inhibitor libraries In this study, we implemented a cell-type deconvolutional approach to comprehensively characterize cell-type alternations across 18 cancer types from The Cancer Genome Atlas (TCGA). Pan-cancer survival analysis using deconvoluted CAF subtypes revealed myofibroblastic CAF (myCAF) composition as a poor prognostic factor in nine cancer types. Patients with higher myCAF compositions tend to have worse response to six antineoplastic drugs predicted by a lncRNA-based Elastic Net prediction model (LENP). In addition, integrative mutational analysis identified 14 and 413 genes associated with the differentiation degree of myCAF and inflammatory CAF (iCAF), respectively, with significant enrichment of genes involved in fibroblast and extracellular matrix (ECM)-related pathways. In summary, our findings systematically illustrated the complex roles of CAF subtypes in patient prognosis and drug response, and identified putative driver genes in CAF-subtype differentiation. These results provided novel therapeutic perspectives for targeting CAF subtypes in tumor microenvironment and arranging treatment scheme based on the CAF compositions in different cancer types.Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy in advanced stages. Chemotherapy has not demonstrated its efficacy in MM and current treatment for tumors carrying the most frequent BRAFV600E mutation consists of BRAF inhibitors alone or in combination with MAPK pathway inhibitors. We previously found that BRAF inhibition prevents activation of the DNA-damage repair (DDR) pathway in colorectal cancer thus potentiating the effect of chemotherapy. We now show that different chemotherapy agents inflict DNA damage in MM cells, which is efficiently repaired, associated with activation of the ATM-dependent DDR machinery. Pharmacologic inhibition of BRAF impairs ATM and DDR activation in these cells, leading to sustained DNA damage. Combination treatments involving DNA-damaging agents and BRAF inhibitors increase tumor cell death in vitro and in vivo, and impede MM regrowth after treatment cessation. We propose to reconsider the use of chemotherapy in combination with BRAF inhibitors for MM treatment.
CGM097 inhibits the p53-HDM2 interaction leading to downstream p53 activation. Preclinical in vivo studies support clinical exploration while providing preliminary evidence for dosing regimens. This first-in-human phase I study aimed at assessing the safety, MTD, PK/PD and preliminary antitumor activity of CGM097 in advanced solid tumour patients (NCT01760525).

Fifty-one patients received oral treatment with CGM097 10-400 mg 3qw (n = 31) or 300-700 mg 3qw 2 weeks on/1 week off (n = 20). Choice of dose regimen was guided by PD biomarkers, and quantitative models describing the effect of CGM097 on circulating platelet and PD kinetics.

No dose-limiting toxicities were reported in any regimens. The most common treatment-related grade 3/4 AEs were haematologic events. PK/PD models well described the time course of platelet and serum GDF-15 changes, providing a tool to predict response to CGM097 for dose-limiting thrombocytopenia and GDF-15 biomarker. The disease control rate was 39%, including one partial response and 19 patients in stable disease.
Website: https://www.selleckchem.com/pharmacological_epigenetics.html
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.