Notes![what is notes.io? What is notes.io?](/theme/images/whatisnotesio.png)
![]() ![]() Notes - notes.io |
The results suggested that strain N3, combined with H12, decreased the uptake of Cd in wheat by①increasing the pH (from 6.74 to 7.08) of wheat rhizosphere soil; ② increasing the Fe oxide (67.9%) and goethite contents of wheat rhizosphere soil; ③ increasing the relative abundance of iron-oxidizing bacteria (Leptothrix spp. and Gallionella spp.), and ④ increasing the content of small particle size ( less then 0.25 mm) aggregates. The results provide a theoretical basis and technical support for the use of heavy metal-immobilizing bacteria to repair farmland contaminated by heavy metals.A pot experiment was conducted to reveal the effects of intercropping a low-cadmium (Cd) accumulating cultivar and a Cd hyperaccumulator on the safe utilization and phytoextraction of Cd-polluted soils. Two cultivars of Brassica chinensis L. (the low-Cd accumulating cultivar Huajun, and the common cultivar Hanlü), were intercropped with four cultivars of Tagetes patula L. (Dwarf Red, Dwarf Yellow, Tall Red, and Tall Yellow). We examined the biomass, photosynthetic characteristics, and Cd accumulation in the plants and available Cd content and dissolved organic carbon (DOC) content in the soils. The results show that under the intercropping treatments, the biomass of B. chinensis decreased significantly and those of T. patula increased significantly, compared with the monoculture treatments. When intercropped with T. patula, the net photosynthetic rate, stomatal conductance, and transpiration rate in the leaves of B. chinensis decreased significantly, compared with the monoculture treatments. When Huajun was it did not affect the Cd extraction ratio. This is suitable for the safe utilization and phytoextraction of Cd-polluted soils.Cadmium (Cd) contamination in the agricultural soils of China is a serious and growing environmental problem that urgently needs to be controlled and completely remediated. check details The biogeochemical cycles of nitrogen (N), sulfur (S), and iron (Fe), and the coupled cycles of Fe-N and Fe-S have been reported to control Cd transportation in the soil-rice system. Exploring practical remediation strategies for Cd from the perspective of the application of nutrients such as N, S, and Fe for rice growth is expected to obtain farm-specific and state-of-the-art technologies and products to reduce the accumulation of Cd in rice grains. Using our earlier study as a basis, the rhizosphere bag-pot experiment with ferrous sulfate (FeSO4) and ferric nitrate[Fe(NO3)3] treatments was conducted to investigate Cd bioavailability in rhizosphere soil and Cd translocation in rice plants, and to highlight some possible factors and mechanisms controlling Cd accumulation in rice grains. The results showed that both FeSO4 and Fe(NO3)3 treatovide a scientific basis for the exploration and application of nutritive soil amendment, and will have significance in regards to the remediation of Cd-contaminated agricultural soils in China.There are many sites contaminated by polycyclic aromatic hydrocarbons (PAHs) or combined PAHs-heavy metal in China, which pose serious health-risks to local people and environments. Dissipative quartz crystal microbalance (QCM-D) was applied to investigate the adsorption of naphthalene to two organic-modified smectite clays (cetyltrimethyl ammonium bromide modified montmorillonite, CTAB-SMF, and 3-mercapto propyl trimethoxy silane modified montmorillonite, TMSP-SMF) and original SMF, together with batch adsorption experiments. The results, based on in-situ online QCM-D experiments, showed that the adsorption sites of CTAB-SMF on naphthalene were mainly CTAB grouped between the interlayers of clay particles, while TMSP-SMF's were TMSP grouped on the surfaces of clay particles. The isotherms of naphthalene adsorption to CTAB-SMF fitted well (R2>0.92) with the Freundlich model, while the adsorption isotherms to TMSP-SMF and SMF fitted well with the Langmuir model (R2>0.96). The parameters of CTAB-SMF (n>1) indicaterials to remediate PAHs or PAHs-heavy metal-contaminated sites.Fifty typical redevelopment industrial sites in the Putuo, Baoshan, Minhang, and Jiangding districts of Shanghai were chosen to evaluate the ecological risk of heavy metals in the soil. The contents of heavy metal (Hg, Cd, Pb, Cr, and As) in 1847 soil samples, taken from vertical sections, were determined, and their risks were evaluated using the Nemero composite index and Hakanson potential ecological risk index. The average contents of Hg, Cd, Pb, Cr, and As in topsoil samples were 0.33, 0.37, 74.55, 69.23, and 9.05 mg·kg-1, respectively. The contents of Hg, Cd, and Pb exceeded the soil background values of Shanghai, which were 2.75, 2.85, and 2.93 times the background values, respectively. The contents of five heavy metals in soil decreased gradually with increased depth. The contents of heavy metals in deep and saturated soils were close to, or below, the background values, indicating that the anthropic activity disturbance was mainly confined to the topsoil. The accumulation of Hg, Cd, and Pb was the mosoil should be a focus of future work.The aim of this study was to quantitatively assess the human health risks derived from different exposure paths of heavy metals in the soil. Zhangqiu county was selected as the study area, and 425 soil samples were collected to measure the As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn contents. A descriptive statistical method was used to assess the heavy metal pollution status of the soils, and the quantitative sources for human health were then determined based on positive matrix factorization (PMF) and geo-statistical techniques. The results show that the contents of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn in the soils exceed background values, but do not exceed the risk screening values, indicating that there is slight heavy metals pollution in the soil. The sources of heavy metals in the soil can be divided into three categories. The spatial distribution of Cr and Ni is approximately the same, is similar to the spatial distribution trend of parent materials, and belongs to natural sources. Cd, Cu, and Zn are controlled by transportation. The spatial distribution is significantly affected by the location of road lines. The hot spot areas of Hg, Pb, and As correspond to the locations of the industrial park and the urban area. Industrial emissions and coal combustion increase the accumulation of Hg in the soil, and As, Pb, and Hg are classified as industrial sources. The contribution rate of industrial source is 41.85%, with transportation sources and natural sources being 33.79% and 24.36%, respectively. The non-carcinogenic and carcinogenic risks under the exposure paths of hand, breathing, and skin are within the acceptable level. For children, the sources of heavy metals with the largest carcinogenic (36.53%) and non-carcinogenic (36.01%) risks are industrial sources. However, transportation is the largest source of carcinogenic (34.98%) and non-carcinogenic (37.06%) risk for adults. Differential avoidance of heavy metal sources and exposure pathways is vital to reducing human health risks.
Website: https://www.selleckchem.com/products/Clopidogrel-bisulfate.html
![]() |
Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...
With notes.io;
- * You can take a note from anywhere and any device with internet connection.
- * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
- * You can quickly share your contents without website, blog and e-mail.
- * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
- * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.
Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.
Easy: Notes.io doesn’t require installation. Just write and share note!
Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )
Free: Notes.io works for 14 years and has been free since the day it was started.
You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;
Email: [email protected]
Twitter: http://twitter.com/notesio
Instagram: http://instagram.com/notes.io
Facebook: http://facebook.com/notesio
Regards;
Notes.io Team