NotesWhat is notes.io?

Notes brand slogan

Notes - notes.io

"""
This script will be responsible for parsing the measurement using signal dataframes.

This Dataio module supports following measurement formats till now.

1. *.h5
2. *.mat
3. *.mf4

# import for pip package creation

# from dataio.DataframeConverter import iConverter
# from dataio.SignalDataframe import MeasurementDataframe

"""

import os

import numpy as np
import logging

# from src.dataio.DataframeConverter import iConverter
# from src.dataio.SignalDataframe import MeasurementDataframe
# from dataio.DataframeConverter import iConverter
# from dataio.SignalDataframe import MeasurementDataframe
from DataframeConverter import iConverter
from SignalDataframe import MeasurementDataframe
logger = logging.getLogger(__name__)


class cMeasParser:
def __init__(self, measurement_file_name):
"""
Constructor to find the correct parser for the input measurement file and return it's parser object.
:param measurement_file_name:
"""
self.measurement_file_name = measurement_file_name
file_name, file_extension = os.path.splitext(self.measurement_file_name)
cParser = MeasurementDataframe(self.measurement_file_name, file_extension)
self.parser = cParser
self.dataframe_converter = iConverter()
self.signal_dataframe = None

def get_measurment_dataframe(self):
"""
Get dataframe of input measurement file
:return:
"""
self.signal_dataframe = self.parser.cParser_obj.get_dataframe(self.measurement_file_name)

self.set_dataframe_dtypes()
self.clean_measurement_dataframe()
self.convert_dataframe_to_parquet()
return

def set_dataframe_dtypes(self):
"""
Set dtypes for dataframe
:return:
"""
self.parser.set_dtypes(self.signal_dataframe)
return

def clean_measurement_dataframe(self):
"""
Clean measurement dataframe
:return:
"""
self.parser.clean_dataframe(self.signal_dataframe)
return

def convert_dataframe_to_parquet(self):
"""
Convert generated dataframe into parquet file format
:return:
"""
self.parser.convert_dataframe_to_parquet(self.signal_dataframe)
return

def get_signal_value(self, signal_name):
"""
This function is for reading the signal value from dataframe. This will receive input signal name from
web ui interface.

Signal value reading process for *.mf4 measurement is different than *.mat and *.h5 measurements

:param signal_name -> string type
:return: signal_value -> numpy array
"""
index = self.signal_dataframe.index[self.signal_dataframe.Signal_Name.str.contains(signal_name)][0]

if os.path.splitext(self.measurement_file_name)[1] in ['.MF4', '.mf4']:
signal_value = self.parser.cParser_obj.meas_parser_data.select([signal_name], raw=True)[0].samples
else:
signal_value = np.array(
self.parser.cParser_obj.meas_parser_data[self.signal_dataframe['Signal_Value'].iloc[index]])

return signal_value

def get_signal_time(self, signal_name):
"""
This function is for reading signal time array from dataframe.This will receive input signal name from
web ui interface.

:param signal_name -> string type
:return: signal_time -> numpy array
"""
index = self.signal_dataframe.index[self.signal_dataframe.Signal_Name.str.contains(signal_name)][0]
if os.path.splitext(self.measurement_file_name)[1] in ['.MF4', '.mf4']:
signal_time = self.parser.cParser_obj.meas_parser_data.select([signal_name], raw=True)[0].timestamps
else:
signal_time = np.array(
self.parser.cParser_obj.meas_parser_data[self.signal_dataframe['Signal_Time'].iloc[index]])

return signal_time

def iter_signal_names(self):
"""
This function is for getting the signal names from the dataframe.
:return:
"""
return iter(self.signal_dataframe['Signal_Name'])

def get_signal_names(self):
"""
This function is for getting the signal names from the dataframe.
:return:
"""
signal_names = list(self.signal_dataframe['Signal_Name'])

return signal_names

def get_device_names(self, signal_name):
"""
This function is for getting the device name from the dataframe based on input signal name.

:return:device_name -> string type
"""
index = self.signal_dataframe.index[self.signal_dataframe.Signal_Name.str.contains(signal_name)][0]

device_name = self.signal_dataframe['Device_Name'].iloc[index]

return device_name

def get_measurement_metadata(self, signal_name):
"""
This function is for displaying the measurement metadata information of a selected signal.

:param signal_name -> string type
:return: mesurement metadata info -> dictionary type
"""
pass

def iter_time_keys(self):
"""
Iterate over time axis keys. This is optional i.e. this attribute is not available in all measurement
formats.

:return:
"""
return iter(self.signal_dataframe['NameTimeAxis'])

def iter_device_names(self):
"""
This function is for iterating over device names.

:return:
"""
return iter(self.signal_dataframe['Device_Name'])

def get_signal_length(self, signal_name):
"""
Get length of a selected signal

:param signal_name -> string type
:return: Length of signal -> int or float type
"""
index = self.signal_dataframe.index[self.signal_dataframe.Signal_Name.str.contains(signal_name)][0]

if os.path.splitext(self.measurement_file_name)[1] in ['.MF4', '.mf4']:
signal_length = self.parser.cParser_obj.meas_parser_data.select([signal_name], raw=True)[0].samples.size
else:
signal_length = len(
np.array(self.parser.cParser_obj.meas_parser_data[self.signal_dataframe['Signal_Value'].iloc[index]]))

return signal_length

def is_signal_empty(self, signal_name):
"""
Check whether signal is empty or not

:param signal_name -> string type
:return: True if signal is empty else False
"""
if self.get_signal_length(signal_name) > 0:
return True
else:
return False

def get_physical_unit(self, signal_name):
"""
Physical unit of selected signals

:param signal_name -> string type
:return: signal_unit -> string type
"""
index = self.signal_dataframe.index[self.signal_dataframe.Signal_Name.str.contains(signal_name)][0]

signal_unit = self.signal_dataframe['Unit'].iloc[index]

return signal_unit

def get_time_key(self, signal_name):
"""
Get time key of selected signal

:param signal_name -> string type
:return: Time Key
"""
try:
index = self.signal_dataframe.index[self.signal_dataframe.Signal_Name.str.contains(signal_name)][0]

return self.signal_dataframe['NameTimeAxis'].iloc[index]
except:
logger.info("No time key data available")


if __name__ == '__main__':
# import matplotlib.pyplot as plt

meas_file = r"C:KBData2022-06-30mi5id786__2022-06-30_10-38-08_Resim_23121203.h5"

obj = cMeasParser(meas_file)
obj.get_measurment_dataframe()
signal_name = obj.get_signal_names()[10]
print(obj.get_signal_time(signal_name))
print(obj.get_signal_value(signal_name))
print(obj.get_time_key(signal_name))
print(obj.get_physical_unit(signal_name))
print(obj.get_signal_length(signal_name))
print(obj.get_device_names(signal_name))


# plt.plot(obj.get_signal_time(signal_name), obj.get_signal_value(signal_name), color='C0')
# plt.show()
     
 
what is notes.io
 

Notes is a web-based application for online taking notes. You can take your notes and share with others people. If you like taking long notes, notes.io is designed for you. To date, over 8,000,000,000+ notes created and continuing...

With notes.io;

  • * You can take a note from anywhere and any device with internet connection.
  • * You can share the notes in social platforms (YouTube, Facebook, Twitter, instagram etc.).
  • * You can quickly share your contents without website, blog and e-mail.
  • * You don't need to create any Account to share a note. As you wish you can use quick, easy and best shortened notes with sms, websites, e-mail, or messaging services (WhatsApp, iMessage, Telegram, Signal).
  • * Notes.io has fabulous infrastructure design for a short link and allows you to share the note as an easy and understandable link.

Fast: Notes.io is built for speed and performance. You can take a notes quickly and browse your archive.

Easy: Notes.io doesn’t require installation. Just write and share note!

Short: Notes.io’s url just 8 character. You’ll get shorten link of your note when you want to share. (Ex: notes.io/q )

Free: Notes.io works for 14 years and has been free since the day it was started.


You immediately create your first note and start sharing with the ones you wish. If you want to contact us, you can use the following communication channels;


Email: [email protected]

Twitter: http://twitter.com/notesio

Instagram: http://instagram.com/notes.io

Facebook: http://facebook.com/notesio



Regards;
Notes.io Team

     
 
Shortened Note Link
 
 
Looding Image
 
     
 
Long File
 
 

For written notes was greater than 18KB Unable to shorten.

To be smaller than 18KB, please organize your notes, or sign in.